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Abstract

Quantitative techniques for spatial prediction in soil survey are developing apace. They
generally derive from geostatistics and modern statistics. The recent developments in geostatistics
are reviewed particularly with respect to non-linear methods and the use of all types of ancillary
information. Additionally analysis based on non-stationarity of a variable and the use of ancillary
information are demonstrated as encompassing modern regression techniques, including gener-

Ž . Ž .alised linear models GLM , generalised additive models GAM , classification and regression
Ž . Ž .trees RT and neural networks NN . Three resolutions of interest are discussed. Case studies are

used to illustrate different pedometric techniques, and a variety of ancillary data. The case studies
focus on predicting different soil properties and classifying soil in an area into soil classes defined
a priori. Different techniques produced different error of interpolation. Hybrid methods such as
CLORPT with geostatistics offer powerful spatial prediction methods, especially up to the
catchment and regional extent. It is shown that the use of each pedometric technique depends on
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the purpose of the survey and the accuracy required of the final product. q 2000 Elsevier Science
B.V. All rights reserved.
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1. Introduction

. . . In that Empire, the Art of Cartography reached such Perfection that the
map of one Province alone took up the whole of a City, and the map of the
Empire the whole of a Province. In time, those Unconscionable Maps did not
satisfy and the Colleges of Cartographers set up a Map of the Empire which
had the size of the Empire itself. and coincided with it point by point. Less
Addicted to the Study of Cartography, Succeeding Generations understood
that this Widespread Map was Useless and not without Impiety they aban-
doned it to the Inclemencies of the Sun and of the Winters. In the deserts of
the West some mangled Ruins of the Map lasted on, inhabited by Animals
and Beggars, in the whole country there are no other relics of the Discipline
of Geography. Jorge Luis Borges, El hacedor

Effective soil management requires an understanding of soil distribution
patterns within the landscape. This is particularly so as the knowledge of soil
allows land use to be kept within its constraints, and thus enable wise decisions
regarding land use by planners and policy makers. Conventionally, soil survey
can be considered as inventories of soil, including field description and labora-
tory analysis and subsequent classification and mapping. The ultimate products
of soil survey are soil maps, incorporating reports on and interpretations of the
soil mapping units or series. Traditionally, soil management and land-use
planning have been the main broad aims of soil survey at all scales. However,
with increasing concern on environmental issues related to our planet, soil
survey has moved from its traditional subjective conjecture to more quantitative
modelling with accompanying accuracy and uncertainty issues.

Traditional soil survey may be thought of as a modelling exercise involving
Ž .scientific methods and an element of art Wilding, 1985 . Generally, a field

survey involves the development of a mental model, which relates the soil with
landform conditions, followed by formulation of hypotheses, which are then
tested by ground-truth survey. The model could be revised, reformulated and a
new soil–landscape portrait could emerge. This is analogous to a painter

Ž .transferring a mental image of a subject to the canvas Wilding, 1985 .
Conventional soil survey methods have in the past been criticised, perhaps

justifiably, for being too qualitative in character. In response to these criticisms,
quantitative models have been developed, especially within the last 30 years or
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so, which are being used to describe, classify and study the spatial distribution
patterns of soil in a more objective way. These quantitative methods enable
precise statements about the soil to be made. The methods are collectively
categorised in the emerging field of soil science known as pedometrics. What is

Ž .pedometrics sensu stricto? Webster 1994 gave a formal definition: ‘‘Pedomet-
w xrics is a neologism derived from the Greek roots, pedos soil and metron

w xmeasurement , and is formed and used analogously to other words such as
biometrics, psychometrics, econometrics, chemometrics and the oldest of all
geometrics’’. The definition covers two main ideas. First, the metric part has
been restricted to quantitative mathematical and statistical methods, and the soil
or pedo part corresponds roughly to that branch of soil science we call pedology.

Ž .Webster 1994 also suggested an alternative problem-oriented definition,
which he paraphrased as ‘‘soil science under uncertainty’’. In this sense,
pedometrics deals with uncertainty in soil models that are due to deterministic or
stochastic variation, vagueness and lack of knowledge of soil properties and
processes. Thus, mathematical, statistical and numerical methods could be
applied to resolve the uncertainty and complexity inherent in the soil system,
including numerical approaches to classification, which deals with supposedly
deterministic variation.

Pedometrics is not new, as mathematical and statistical methods have been
applied to soil studies since at least the 1960s. However, it was first formally
recognised as a different branch of soil science to traditional pedology just over
a decade ago. Over time, the use of computers has increased in both fields, and

Žthe difference between the two has decreased, and in some cases overlapped as
.shown in Fig. 1 . Traditional pedology has, of necessity, become more quantita-

Fig. 1. A time line of the growth of pedology and pedometrics.
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Fig. 2. Postage stamp issued for the 9th Congress of Soil Science, Adelaide, Australia, 1968.

tive through the increased use of computerised soil information systems. Pedo-
metrics has developed quantitative methods, which attempt to account for
conceptual pedological models of soil variation. Now there is a strong and
growing overlap and synthesis between traditional pedology and pedometrics.
Although technology has changed dramatically since the late 1960s, the promise
of computerised soil information and associated pedometric techniques was
alluded to in a postage stamp issued 30 years ago for the 9th Congress of Soil

Ž .Science held in Adelaide in, Australia Fig. 2 .
At the same time as the increase in the use of pedometric techniques there has

been a corresponding increase in the demand for quantitative information. This
information is required for different purposes, and at a variety of extents and

Ž .resolutions Table 1 . This paper will review a range of pedometric techniques
that are being used for soil survey data analysis at present, with case studies.
First, some thoughts on how increasing availability of ancillary data have
provided new vistas for soil inventories.

Table 1
New demands for quantitative soil information at various resolutions and extents

Demand Typical resolution Typical extent

NationalrContinentalr Global climater )2 km )200 km
Global food security models
CatchmentrLandscape Environmental inputr 20 m–2 km 2–200 km

watershed
Local Precision agriculture -20 m 2 km



(
)

A
.B

.M
cB

ratney
et

al.r
G

eoderm
a

97
2000

293
–

327
297

Table 2
Examples of sources of exogenous data for soil inventory

Carrier SensorrScanner Sensed data LandrSoil information

Ž .Air-borne: Photogrammetricrvideographic spectral imageries albedo DEM, crop growth, vegetation
Ž .aeroplanes and balloons cameras

SLAR radiance energy moisture, landscape
NIR radiance energy moisture, clay, etc.
Gamma-radiometer gamma radiation K, U and Th isotopes

Space-borne Multi-spectral thematic mapper, etc. radiance energy and albedo vegetation, moisture
Landsat: SPOT Satellites High resolution visible radiance energy and visible DEM, landscape, vegetation and moisture

Ž . Ž .panchromatic and multispectral spectral imageries albedo
Ž .Landsat: NOAA Satellites Advanced very high resolution surface reflectance, soil, vegetation, moisture drought

Ž .radiometers AVHRR surface temperature
Ž .Proximal Sensors and Scanners: Time domain reflectrometer TDR apparent dielectric constant moisture

Ž . Ž .humans, vehicular, etc. Electromagnetic induction EM apparent conductivity salinity, clay and moisture
Gamma-radiometer gamma radiation K, U and Th isotopes
Soil chemical sensors soil chemical composition soil fertility, organic carbon, etc

Ž .Ground-penetrating radar GPR radiance energy soil conductivity, soil layers, etc
y1Ž .Yield monitors crop yield ha and quality yield data associated with soil variability

Humans Various, human existing ground-truth e.g., topographic, geologic, vegetation
data and maps, etc.
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2. The increasing richness of data sources

The task of a soil survey is to provide soil information for either general
purposes or for a specific use, with the latter task being dominant. In the past,
soil scientists based their approach on the qualitative analysis of the landscape
either by physiographic analysis or by aerial photographic interpretation or both.
These were all attempts to enrich the soil information through the use of
exogenous data. Due to increasing awareness of environmental pollution and
associated problems by the general community, quantitative soil information is
now required to enable more precise statements on the status of the environment
to be made. Pedometric techniques have been developed to meet these require-
ments. Basically, these techniques stem from the classical approach when the
soil scientist generally would study the climate, geology, geomorphology,
vegetation, and land use and land use history, prior to any soil survey. Lately,
technical advances have provided us with a wealth of new environmental data
sources, which are summarised in Table 2.

Air-borne and space sensors are now generating terabytes of data on a daily
basis. The air-borne sensors vary from the traditional aerial photography to

Ž .air-borne videography Table 2 . The space sensors generally consist of series of
satellites, many of which were originally designed and launched for general
studies of the various earth resources. Increasingly, proximal sensors are now
being used for the purpose of research and development for soil-specific crop

Ž .management McBratney and Pringle, 1997 .
There is a variety of in situ soil-measuring systems, and they may determine

variability internally or externally from the soil. For example, internal detectors
Ž .include the neutron probe and time domain reflectometry TDR , both providing

an estimate of soil moisture. The soil can be analysed from an external, or
Ž .remote position, and gammaradiometrics e.g., Cook et al., 1996 , ground-

Ž . Ž .penetrating radar, or electromagnetic induction EM Lesch et al., 1995
provide another quantitative measurement for use in pedometrics. There has
been an attempt in recent years to obtain the quantitative data in a continuous
fashion across the landscape, and at the catchment and continental extent. This

Ž .may be provided by satellite digital images Curran, 1998 . At the local extent,
newly developed sensors attached to mobile machinery are providing on the go
continuous measurements of a field. Examples of this include the conductivity

Ž .cart Triantafilis and McBratney, 1998 , which measures the EC of soil. We now
examine pedometric techniques that are used for the analysis of the sensed data
for more efficient and inexpensive, quantitative soil inventories.

3. Pedometric techniques, including newer methods

There are a variety of techniques available for analysing the spatial distribu-
tion of soil, with the most common methods in use at present being geostatistics,
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classical statistics and the combination of the two. Each of these will be
discussed, but first it is worth mentioning what should be considered as some of
the pioneering efforts in pedometrics, and the two more recently emergent
techniques-fuzzy sets or fuzzy logic, and pedodiversity.

3.1. Numerical classification

The main purpose of any classification is data reduction whereby a complex
system represented by some set of data is made more explicit. Almost all soil
surveys are accompanied by some forms of grouping, be it the so-called
‘‘natural’’ system of classification or the technically interpretative form. How-
ever, these classifications are composed of mutually exclusive classes in order to
conform to the discontinuous soil variation embedded in the traditional soil
surveys. But, soil variation is more continuous than discrete. The pioneer work

Žin pedometrics, the computer-based numerical classification Hole and Hiron-
.aka, 1960; Moore and Russell, 1967; de Gruijter 1977 , was designed to address

this limitation among others.
Since the early studies in numerical soil classification, its application has

Žbroadened considerably. Spatial and geostatistical analysis e.g., McBratney and
. Ž .Webster, 1981 , soil database management de Gruijter, 1977 , discriminant

Ž .analysis for improved identification Webster and Burrough, 1974 are some of
the application of numerical classification in soil science. While the applications
of numerical soil classification to soil studies are, to some extent, based on
continuous representation of soil in space, their results are still interpreted in

Ž .terms of discontinuous classes Odeh et al., 1992 . There is also lack of any
Ž .spatial coherence for the classes to be mapped Burrough, 1986 . Moreover,

numerical classification methods are based on linear interrelationships. Recent
advances are based on fuzzy sets for optimised prediction quality of the resulting
classification, and which take cognisance of the continuous nature of soil

Ž .variation McBratney and Odeh, 1997 .

3.1.1. Fuzzy sets and fuzzy logic
Many quantitative models in soil science are characterized by multiple,

Žusually conflicting attributes; subjective uncertain conception of preferences of
.the modeller , and uncertain, imprecise information on data used in the models.

While classical statistical methods, based on determinism and involving imposi-
tion of some specific field designs and treatments to minimize the effect of

Ž .uncertainty Fisher, 1954 , have been quite successful, uncertainty is considered
a removable artifact which should disappear with increasing knowledge
Ž .Bardossy and Duckstein, 1995 . However, uncertainty, imprecision and ambi-
guity are inevitable or inherent parts of natural systems such as soil. In many
cases, the complexity of the models stems from overemphasized precision,
which does not always mean greater truth. Applications of fuzzy-set theory in
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soil science, especially in soil-pattern recognition, deal with uncertainty that is
mainly due to imprecise boundaries between categories. Even in cases where the
model is considered to be precise, fuzziness may be a concomitant of the

Ž .complexity Kandel, 1986 .
The first application of fuzzy-set theory in soil survey was principally for

classification. In general, the purpose of classification is to reduce a complex
system, represented by some sets of data, into explicitly defined classes. Two
different but complementary approaches to grouping individuals into fuzzy sets
or classes are now used in soil science. The first is based on fuzzy c-means
Ž . Ž .FCM, also known as fuzzy k-means Bezdek, 1981 partitioning of observa-
tions in multivariate space into relatively stable naturally occurring groups. De

Ž .Gruijter and McBratney 1988 modified the FCM algorithm for improved
predictive classification by providing for membership to an extragrade class,

Ž .which McBratney et al. 1992 termed, continuous classification with extra-
grades. The modified objective function, defining the within-class sum-of-square
errors J , is expressed as:E

n c c c
w 2 ) y2J M ,c sa m d q 1ya m d 1Ž . Ž . Ž .Ý Ý Ý ÝE i j i j i i j

is1 js1 js1 js1

where c is the number of classes, n is the number of individuals or pedons; mi j

is the membership of an individual i in class j; w is the fuzziness exponent
Ž .1-w-` ; d is the character space between the feature value of an individ-i j

ual, i, and the feature centroidal value for class j; a is the parameter that
determines the mean value of m), which is the membership value of ani

individual, i, in the extragrade class. The application of the FCM algorithm for
Žsoil classification is gaining wide acceptance in the soil science community see

.examples in de Gruijter et al., 1997 .
Another approach in using the fuzzy sets for soil classification is based on

Ž . Ž .what is termed the Semantic Import model SI Burrough et al., 1992 , whereby
a membership function is defined without reference to the data, but with the
class limits specified. The class limit specifications are defined a priori based on
expert knowledge or conventionally imposed definitions before multi-attribute
individuals are allocated on the basis of how close they match the requirements
of the classes. An example of classes that are defined a priori is the FAO

Ž .Framework for Land Evaluation FAO, 1976 .
Fuzzy-set theory is required for land evaluation, as defined in the FAO

framework, because basic soil information used for land evaluation is mostly
described by seemingly vague terms such as ‘‘poorly drained’’, ‘‘slightly

Žsusceptible to soil erosion,’’ ‘‘moderate nutrient availability’’ etc. Burrough,
.1989 . Even when these terms are defined precisely, the qualitative ambiguity

remains. Usually, the land evaluator’s aim is to produce a set of clearly defined
Ž .classes of land qualities based on specified land use requirements FAO, 1976 .
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These subsequently provide the means of transferring information about the soil
and its use. As land qualities are complex attributes that are derived from land
characteristics such as topography, soil, water, or biological and human activity,
subsequent Boolean logical operations in the process of land evaluation tend to

Ž .throw away much of useful information Burrough et al., 1992 .
Ž .Chang and Burrough 1987 were the first to apply fuzzy sets and logic to

Ž . Ž .land evaluation. Burrough 1989 and Burrough et al. 1992 used fuzzy
classification to determine land suitability for various purposes. All these studies
involved the complex combination operator as defined for fuzzy systems
Ž . Ž .McBratney and Odeh, 1997 . Burrough et al. 1992 reported that fuzzy
methods were much better in producing suitability classifications than Boolean
methods. Fuzzy applications in the analysis for specific soil qualities is becom-

Ž .ing common, for example, soil fertility Dobermann and Oberthur, 1997 and
Ž .soil pollutants Hendricks Franssen et al., 1997 .

The use of fuzzy sets and fuzzy logic is advantageous in soil survey as it
allows for the spatial variability of soil to be determined in a continuous way as
it is in the real world. Recent advances in the use of fuzzy sets in soil science
involve three-dimensional rule-based modelling in a continuous manner
Ž . Ž .Ameskamp, 1997 . De Gruijter et al. 1997 provide a full account of examples
of fuzzy sets in soil science.

3.2. PedodiÕersity

Ž .Pedodiversity analysis is a relatively new technique McBratney, 1992 , and
Ž .is a new way of looking at variability of soil. Ibanez et al. 1998 took a bold

step in determining the pedodiversity of the continents. This was based on the
available soil maps and Shannon’s index, which measures the richness and
evenness of the major soil groups within each continent. Using the data from

Ž .Ibanez et al. 1998 we have plotted the diversity against the area for each
continent, to produce the plot in Fig. 3. For example it can be seen in Fig. 3 that,
on a unit areal basis it seems Australasia, one of the oldest continents, is the
least diverse, while the younger continents, such as South and Central America,
are the most diverse. Pedodiversity may be considered from a taxonomic or
functional point of view. It is expected that pedodiversity will become an
important index of soil quality and its estimation will become an integral part of
soil-resource assessment.

3.3. Pedometric methods used for land eÕaluation and soil quality assessment

Although soil-quality assessment is often used as a misnomer for land
evaluation, both could be regarded as an interpretative phase of soil survey.
Eventhough the focus of this paper is primarily on analysing soil data obtained
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Ž . ŽFig. 3. Diversity versus area of continents, from Ibanez et al., 1998 with best fit line of
.‘‘average’’ diversity .

from soil surveys and transforming them into either digital or map form, a
number of pedometric techniques used for land evaluation and soil quality
assessment are worth mentioning. A widely acceptable definition of soil quality

Ž .is given by Doran and Parkin 1994 which states that soil quality is ‘‘the
capacity of the soil to function within ecosystem boundaries to sustain biological
productivity, maintain environmental quality, and promote plant and animal
health’’. This definition emphasises soil processes and ecological functions of
soil, including agricultural productivity and human health. Mostly pedometric
techniques are used for soil-quality assessment, which could be single issue-,

Žsingle process- or function-based. Pedo-transfer functions Renger, 1971;
.Vereecken et al., 1989 have largely been used for such process- and function-

related analyses. Many examples of process-orientated soil-quality assessment
Ž .using pedometric techniques are provided in Finke et al. 1989 . Bouma et al.

Ž .1998 provide a global perspective of land-quality assessment and the world
food supply.

3.4. Generic pedometric techniques

Focusing on the basic types of pedometric techniques used for spatial
prediction of soil, and hence in a general sense soil survey, two generic
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techniques come to mind. The first, the classical approach, collectively referred
to here as the CLORPT methods, and the second, geostatistical methods. To
these we add a third group, hybrid methods, which are some combination of
techniques from the two generic techniques above. The combination is carried
out optimising the prediction of soil properties. These are treated in Section 3.5.
The older and the emerging techniques and the style of each are summarised in
Fig. 4.

3.4.1. CLORPT techniques
The CLORPT methods are based on the empirical-deterministic models that

Ž . Ž .originated from Jenny’s 1941 ‘‘Factors of Soil Formation’’ Fig. 3 . Jenny’s
Ž .1941 state-factor equation is expressed as:

Ss f CL, O , R , P , T 2Ž . Ž .

where S is some soil properties as a function of the state factors: CL as climate,
O as organisms, R as relief, P as parent material, and T as time. Soil spatial
variability is therefore considered as being causative realisations of the complex
combinations of soil-forming processes as influenced by the soil forming

Ž Ž ..factors. The CLORPT function Eq. 2 , earlier in the 19th century, stimulated
numerous studies. Much of the earlier studies, and indeed some recent ones,

Žwere based on general and bivariate-simple linear regression e.g., Furley, 1971;

Fig. 4. The generic pedometric techniques, their hybrid and their styles with respect to mode of
spatial prediction.
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.Moore et al., 1993 , although multiple polynomial regression models were
Ž .applied by Ruhe and Walker 1968 . The realisation that many of these studies

do not accommodate the non-linearity in the relations has led to recent applica-
Ž .tion of the more robust methods such as generalised linear models GLM ,

Ž . Ž . Žgeneralised additive models GAM and regression trees RT Odeh et al.,
.1994, Gessler et al., 1995 . Another developing method is the artificial neural

Ž .network NN model, which is a non-parametric modelling technique, which
Ž .mimics the neurons of the brain Venables and Ripley, 1994 . The networks are

composed of processing units, or neurons, which are organised into layers, i.e.,
input, hidden and output layers. Neural networks are ‘‘trained’’ by the data used
to create them. Inputs are distributed from the input units into the hidden layer
where the inputs are weighted and summed, a bias added and a fixed function of
the result taken. The neural network fits iteratively, minimising differences

Žbetween predictions and actual values during training Venables and Ripley,
.1994 . But, the question to ask is while the classical models or the more robust

methods may take care of the deterministic relations, do they account for spatial
autocorrelations of the soil properties, especially at the local level? To answer
this question, the pioneer pedometricians initiated the application of geostatis-

Ž .tics which was primarily developed for the mining industry , the compendium
of which is given below.

3.4.2. Geostatistical techniques
Geostatistical methods are based on the theory of regionalised Õariables

Ž .Matheron, 1965 , which allows us to consider spatial variability of a soil
property as a realisation of a random function represented by a stochastic model.
The geostatistical method of spatial interpolation is termed kriging. The first

Ž .major applications of ordinary kriging OK in soil studies emerged in the early
Ž .1980s e.g., Burgess and Webster, 1980 . Since then, ordinary kriging has been

Žwidely used in various sub-fields of soil science: soil reclamation Samara and
. ŽSingh, 1990 , in soil classification e.g., Odeh et al., 1992; Burrough et al.,

. Ž . Ž1992 , soil salinity study Bourgault et al., 1997 and soil pollution studies e.g,
.Hendricks Frassen et al., 1997 , etc. Major limitations of the univariate geosta-

tistical technique of kriging are due to the assumptions of stationarity which are
not often met by the field-sampled data sets and, of course, the often cited
requirement of large amount of data to define the spatial autocorrelation.
However, with increasing availability of ancillary information, the lack of
adequate samples has been partially solved. The univariate usage of kriging is
also limiting in situations of complex terrain where the soil-forming processes
are themselves complex. In such situations, there is the need to model both the
structured and the spatially dependent components of the soil variable. Also
there are economic and logistic reasons for including the ancillary influencing
soil variability, especially if the latter are more readily and cheaply available. As
both the soil and the exogenous factors are multivariate, the most obvious
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choices are appropriate combinations of multivariaterunivariate analysis using
the CLORPT factors and the geostatistical methods. These combinations consti-

Ž .tute the hybrid techniques Fig. 4 .

3.5. Hybrid techniques

The hybrid techniques for soil survey are based on various combinations of
the geostatistical and multivariate or univariate CLORPT methods. Let us
suppose that a data vector describing a soil property is a random variable Z,
determined at locations in a region, Xsx , . . . , x , and consisting of three1 N

components as

Z x smqZ x q´ x 3Ž . Ž . Ž . Ž .1

Ž .where m is the local mean for the region, Z x is the spatially dependent1

component and ´ the residual error term, spatially independent. Now there may
be situations where m is varying and dependent on some exogenous factors such
as the CLORPT factors. In other words it is deterministically related to some

Žcausative factors in geostatistics parlance, the variable is said to exhibit a
.trend . Wherever trend exists, the ordinary univariate kriging is inappropriate.

Several methods have been designed to accommodate the trend.

3.5.1. UniÕersal kriging
Ž .Universal kriging Matheron, 1969 has been the commonly used method to

accommodate the trend or the ‘‘changing drift’’, as it is sometimes known, in a
soil variable. The universal kriging is a combination of the standard model of
multiple-linear regression and the geostatistical method of ordinary kriging
Ž .Webster, 1994 , which is also analogous to combining CLORPT methods with
the univariate kriging using the geographical coordinates as determining the
drift. More recently, a more advanced approach, the Intrinsic Random Function

Ž .of Order k IRF-k , has been used to accommodate the varying nature of the
Ž .trend in a regionalised soil variable McBratney et al., 1991 . The term k

represents the order of polynomial trends — ks0 means constant drift, and the
IRF-k is equivalent to ordinary kriging system of equations; if ks1, we have
linear drift; ks2 yields quadratic drift. But, where there is not trend but
deterministic relationships with some known or readily available and inexpen-

Ž .sive covariates CLORPT factors or other easy-to-measure soil variables,
cokriging has played a major role in efficiently predicting the target soil variable
Ž .Stein et al., 1989; Odeh et al., 1995 . Universal cokriging is also possible when
considering the trend and covariation with one or more secondary variables
Ž .Stein et al., 1988 .

3.5.2. Cokriging
Cokriging is the multivariate extension of kriging that allows the inclusion of

more readily available and inexpensive attributes in the prediction process.
There are many instances in soil survey where the CLORPT factors such as
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topography, time, variable parent material, etc, are easily discernible or are
either readily available andror cheap to obtain. The most efficient way to
predict the expensive-to-measure target soil variable, the variation of which is
affected by the CLORPT factors, is to use the factors in cokriging the target soil
variable-sampled at fewer locations, into dense grid nodes. This is termed as

Ž . Ž .heterotopic cokriging HCOK Wackernagel, 1994 in comparison with iso-
topic cokriging which requires that data on both the target variable and
co-variables be available at all sample locations. A variant of both is the

Ž .generalised cokriging Myers, 1982 that involves simultaneous prediction of all
the correlated variables into more dense locations. Heterotopy can either be

Ž .complete or partial Wackernagel, 1995 . The complete case is the case where
the covariates and the target variable do not share any common locations. A
third is termed collocated cokriging, whereby covariates are available at all
interpolation nodes, eventhough the target variable is available at only a few
locations. This is often the case with using exogenous variables especially

Ž .landform attributes derived from DEM Odeh et al., 1995 and satellite im-
ageries for predicting the target soil variable. The partial heterotopy involves
cases where there is some coincidence of the locations of the target variable and
the ancillary variables. The latter is often the case when other soil covariates are

Ž .used McBratney and Webster, 1983 .

3.5.3. Regression kriging
Ž .Regression-kriging RK is another hybrid method that combines either a

Žsimple or multiple-linear regression model or a variant of GLM, GAM and
.regression trees with ordinary, or simple, kriging of the regression residuals

Ž .Odeh et al., 1995; Goovaerts, 1997 . The assumption here is that the determin-
Ž Ž .. Ž .istic component m in Eq. 3 of the target soil variable is accounted for by

the regression model, while the model residuals represent the spatially varying
Ž Ž ..but dependent component Z in Eq. 3 . If the exogenous variables used in the1

regression equation are available at denser locations than the target variable, the
equation can then be used to predict the m onto those locations. The Z can also1

be predicted to the same locations by ordinary kriging system of equations, and
) Ž .then added to the m to obtain Z . Odeh et al. 1995 and Odeh and McBratney

Ž .2000 have demonstrated the superiority of RK to other prediction methods
such as ordinary kriging, universal kriging, multiple-linear regression and

Žcokriging. A variant of RK is kriging with uncertainty Ahmed and DeMarsily,
. Ž1987 . Kriging with uncertainty introduces the regression residuals as represent-

.ing model uncertainty into the kriging system, which is then used to predict the
Ž .target soil variable Knotters et al., 1995 . This reduces the extrema of the target

variable and therefore produces a smoother function of the predicted values.
Ž .While Odeh et al. 1995 found kriging with uncertainty not as good as

regression-kriging, they nevertheless reported it to be better than ordinary
kriging or cokriging alone.
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3.5.4. Kriging with external drift
Ž .Kriging with external drift KED is a somewhat different hybrid technique

which integrates the universality conditions into the kriging system using one or
Ž .more of the ancillary drift variables Wackernagel, 1995 . It is similar to

universal kriging, but it uses an ancillary variable to represent the trend
Ž .Goovaerts, 1997 . These variables could be digitised covariates derived from

Ž .digital elevation model DEM , or rainfall data or scanned images. The univer-
sality conditions need to be known not only at the sampled locations but also at
the prediction locations. KED has not been widely used in soil science but, as
remotely sensed data become more readily available, it may well be the method

Ž .to be used along with regression-kriging Odeh and McBratney, 2000 , espe-
Ž .cially for soil inventory at the regionalrcatchment 20 m–2 km resolution.

3.5.5. Factorial kriging
Ž . Ž .Wackernagel 1988 and Goovaerts 1992 first introduced factorial kriging

Ž .FK to soil science. The method involves a combination of classical multivari-
ate analysis and geostatistics in which multivariate variogram modelling, princi-
pal component analysis and cokriging are carried out on a multitude of soil
variables. The assumption behind FK is that many of the soil variables have the

Žsame communality as defined by soil forming processes influenced by the
. Ž .CLORPT factors that enables principal component or its variants analysis of

the variance–covariance matrices of the variables which are themselves associ-
Ž .ated with spatial scales Goovaerts, 1992 . Prior to this, McBratney and Webster

Ž .1981 transformed their soil data by principal component analysis before
embarking on spatial analysis — a form of factorial kriging. Also, closely
related to factorial kriging is the application of fuzzy set theory for classification
of the soil into continuous classes. Various combinations of fuzzy logic and

Žclassification with kriging have been adopted for soil mapping see examples in
.de Gruijter et al., 1997 . New methods involving fuzzy-kriging integral and

Ž .fuzzy inference e.g., Pham, 1997 are emerging that could prove useful for
optimal spatial prediction of soil variables. A major problem with FK is the
linearity assumption which is often not met by many soil variables, but the
problem can largely be solved by some transformations or by using correspon-
dence analysis or even by using fuzzy integral as mentioned above. In general,
FK, and indeed many of the multivariate statistical techniques, are mainly
exploratory tools for revealing the correlation structure of the soil variables but
are not spatial prediction techniques per se.

4. Three case studies at spatial extents of interest

In Australia, one of the pressing needs in environmental modelling and land
use planning is soil information. Good quality soil data are now required for
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accurate planning of the land resource use, minimising environmental impact
and monitoring of the environment. We provide examples or case studies in
Australia, which illustrate how the necessary soil data are being acquired at
different spatial extents for their respective purposes.

Three spatial extents and the associated resolutions are considered here. Each
of these extents has different implications for the soil information required. At
the local extent information is needed for agricultural management, conservation
and precision agriculture. As the area is increased to the catchment or regional
extent soil knowledge is required for environmental monitoring, and for study-
ing changes brought about by a disruption of ecosystems. At the national and
continental extents, which are not treated here, soil information is required to
allow study of the global climate and to model food production and supply.

The case studies provide examples of different pedometric techniques at
different extents and their associated resolutions. The locations of the case
studies are shown in Fig. 5. The areas are all located in the northwest of New
South Wales, Australia, an area that is primarily of arable agriculture.

Fig. 5. The locations of the three study areas within Australia and New South Wales, and the
sampling pattern.
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4.1. Local extent

The emerging field of precision agriculture has brought about increased
interest and the need for the development of methods for analysing the within-
field variability of crop and soil attributes and their management. The ultimate
requirement of these methods is real-time ‘‘on-the-go’’ soil and crop sensing
which is at varying stages of development — the most developed being the
grain-yield sensors. Furthermore, advances in remote sensing techniques and the

Žincreasing availability of high-resolution, multi-spectral satellite images as high
.as 2 m pixels and new data sources, such as radar imagery, have provided new

vistas for within-field monitoring of soil and crop attributes. This section deals
with how these new exogenous data could be used for producing more precise
soil maps at high resolution, required for precision agriculture. This is especially
pertinent to the Australian wheat belt where soil information is scarce to
non-existent. In the examples here, we compare the quality of information
produced using different ancillary data and different pedometric techniques.

4.1.1. The study site and the aÕailable ancillary information
This study was performed on a 42-ha field near Moree in Northern NSW in

Australia. Ninety-five soil samples were taken at a depth of 15–30 cm and the
clay content measured using the hydrometer method. The sampling layout is
shown in Fig. 6. In carrying out the comparative study, 10 samples were
randomly selected as the validation set while the remaining 85 samples were
used in different prediction methods with varying combinations of ancillary
variables.

Fig. 6. Prediction and validation sites within field W80.
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Ancillary data acquired for the field are:

Ž .Ø electromagnetic EM data from a Mobile Electromagnetic Soil-sensing
Ž .System MESS with GPS

Ø sorghum yield data for 1997, obtained using an AgLeader yield monitor with
GPS

Ž .Ø point elevation, derived from a real-time Ashtech kinematic GPS

The EM data were obtained using both the EM31 and EM38 in both the
horizontal and vertical mode. Thus, there are four different data values at each
point. Whereas the EM38 measures bulk soil conductivity in the top 1 m in the
horizontal and top 2 m in the vertical mode, the EM31 measures bulk soil
conductivity of the top 4 and 7 m in the horizontal and vertical modes,

Ž .respectively Rhoades and Corwin, 1981; Corwin and Rhoades, 1990 . Apart
from soil solutes, EM measurements are also affected by soil texture, mineral-

Ž .ogy, structure and moisture Rhoades, 1992 . Hence, the MESS could generally
be considered a crude real-time ‘‘on-the-go’’ sensor for several soil attributes.

A crop yield map reflects the interaction of the soil and atmospheric
environment with the plant. For this reason, one or more soil attributes have

Žbeen used to predict crop yield Sudduth et al., 1997; Shatar and McBratney,
.1999 . It was therefore considered reasonable to examine the reverse and use the

yield data for predicting soil properties. This is especially relevant in the case of
clay content as it is relatively highly correlated with other soil properties, such
as soil drainability, moisture content, nutrient status, etc., which affect plant
growth and therefore yield.

The use of elevation data and derived terrain attributes for the prediction of
Žsoil properties and the rationale behind it has been reported in the literature Bell

.et al., 1995; Moore et al., 1993 . Several studies have used only simple or
Ž .multiple-linear regression techniques MLR to predict soil properties from

Ž .terrain attributes Tomer et al., 1995; Moore et al., 1993 . Recently emerging
and more advanced pedometric techniques, such as heterotopic cokriging and
RK, have demonstrated increased benefits in terms of resolution and precision

Ž .when digital terrain models are used Odeh et al., 1995; 1996 . Our aim here
was to compare several of these methods to determine the most precise and least
biased of the methods.

4.1.2. QuantitatiÕe spatial prediction and results
The raw ancillary data was interpolated onto a common 2-m grid prior to

their use for soil prediction. This may be thought of as a downscaling process
Ž .Bouma and Hoosbeek, 1998 . For the raw elevation data the TOPOGRID tool

Ž .in Arc Info ESRI, 1997 was used to generate a 2-m raster DEM. The GRID
module of Arc Info was then used to derive the terrain attributes of slope,
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Table 3
Ž y1.Summary statistics of prediction and validation sets of clay content dag kg

Prediction set Validation set

Maximum 60.18 62.07
Minimum 32.39 34.34
Mean 45.34 48.28
Standard deviation 6.93 8.43
Number of samples 85 10

Ž .upslope area, profile curvature, plan curvature Zeverbergen and Thorne, 1987
and compound topographic index.

In the case of the EM and yield data, local block kriging based on an
Ž .exponential variogram Minasny et al., 1999 was used to predict onto the 2-m

grid. For block kriging of the EM data, a 5-m block size was used to smooth out
both positional errors from the GPS and instrumental errors. A 20-m block size
was chosen for the yield data because at this block size a balance was reached
between minimising the uncertainty in the yield measurements and over-smooth-
ing of the yield data. If the size of the block is too large, over-smoothing occurs
in the yield data to the point where site specificity in yield measurements is lost
Ž .Whelan and McBratney, 1999 .

Table 3 shows the summary statistics of the prediction and validation set.
Both sets have similar range, mean and standard deviation.

Correlation between the clay content in the prediction set and the ancillary
variables are displayed in Table 4. Note that the upslope area was log-trans-
formed to obtain a more normal distribution than exhibited by the raw data.

Table 4
Correlation coefficients of ancillary information with clay content at 15–30 cm depth

Ancillary data Correlation coefficient

Elevation y0.358
EM31-vertical mode y0.188
Compound topographic index 0.162
Sorghum yield y0.153
EM31-horizontal mode y0.107
EM38-vertical mode 0.087
EM38-horizontal mode y0.078

aUpslope area 0.071
Plan curvature 0.041
Slope 0.024
Profile curvature 0.001

aUpslope area was log transformed to give it a normal distribution.
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To determine the benefits of the different ancillary data for soil map creation
Ž .they were divided into three groups for the prediction of clay content; 1 digital

Ž . Ž .terrain attributes, 2 EM data, 3 yield data. In addition they were considered
all together as one group.

The following pedometric techniques were tested in combination with each
different group of ancillary variables:

Ž .Ø Regression techniques: MLR, GLM, GAM, RT and neural networks NN .
Ø Geostatistical techniques: ordinary kriging, heterotopic cokriging.

ŽØ Hybrid techniques: RK regression techniques as mentioned above combined
.with ordinary kriging of their residuals .

No trend was evident in the clay content data so geostatistical techniques such
as IRF-k kriging or kriging with external drift were not performed.

ŽRegression methods were performed using S-PLUS Statistical Software Stat-
.istical Sciences, 1995 . A feed-forward neural network with one hidden layer

Žwas used. Kriging and co-kriging were performed using ISATIS Geovariances,
.1997 . All the techniques are described above.

To test for prediction performance, the various data sets were used to predict
clay content at the validation sites using the different pedometric techniques.
The prediction quality of the methods was determined based on the root mean

Ž . Ž .square error RMSE and mean error ME of prediction, respectively expressed
as:

n1 2
)RMSEs z x yz x 4Ž . Ž . Ž .Ž .Ý i i) n is1

n1
)MEs z x yz x 5Ž . Ž . Ž .Ž .Ý i in is1

Ž . Ž ).where z x sactual clay content, and z x spredicted clay content. Thei i

results are summarised in Table 5.

4.1.3. Discussion
Based on the RMSE values as the criterion for prediction performance, the

Ž .results are similar to those reported by Odeh et al. 1996 . RK generally
outperformed the generic geostatistical techniques of kriging and the hybrid
technique of co-kriging. As expected ordinary kriging performed poorly due to
its reliance solely on the sparsely distributed clay data. Partial heterotopic
co-kriging also performed poorly, probably due to the low correlation of clay
with the covariates and the problems with fitting a common variogram model to
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Table 5
Ž . Ž .Prediction performance at the local extent: root mean square error RMSE and mean error ME

Žof of prediction by different pedometric methods and different ancillary data combinations values
.in parentheses are the regression kriging result

y1 y1Ž . Ž .Pedometric technique RMSE dag kg ME dag kg

Regression techniquerancillary Õariable
Ž . Ž .Regression tree: terrain data 8.88 8.94 2.29 1.67
Ž . Ž .Regression tree: yield data 8.65 9.04 2.79 2.11
Ž . Ž .Regression tree: EM data 7.93 7.06 0.96 y0.06
Ž . Ž .Regression tree: all data 8.19 7.57 1.53 0.15
Ž . Ž .Generalised additive models: terrain data 6.16 6.00 1.46 y0.33
Ž . Ž .Generalised additive models: yield data 8.34 8.01 2.29 0.80
Ž . Ž .Generalised additive models: EM data 7.51 7.19 1.81 0.64
Ž . Ž .Generalised additive models: all data 6.90 7.03 1.55 0.33
Ž . Ž .Multiple linear regression: terrain data 7.94 7.27 3.41 2.29
Ž . Ž .Multiple linear regression: EM data 7.52 7.11 1.59 0.56
Ž . Ž .Multiple linear regression: yield data 8.58 7.58 2.92 1.50
Ž . Ž .Multiple linear regression: all data 7.82 7.41 2.92 2.29
Ž . Ž .Generalised linear models: terrain data 7.35 6.88 2.85 2.05
Ž . Ž .Generalised linear models: yield data 8.58 7.94 2.92 1.57
Ž . Ž .Generalised linear models: EM data 7.52 6.75 1.59 0.84
Ž . Ž .Generalised linear models: all data 8.42 7.90 2.31 1.23
Ž . Ž .Neural networks: terrain data 7.85 7.20 3.05 1.58
Ž . Ž .Neural networks: yield data 8.40 7.91 2.47 0.93
Ž . Ž .Neural networks: EM data 7.64 7.56 1.76 0.61
Ž . Ž .Neural networks: all data 7.44 7.28 2.38 1.36

Geostatistical technique
Ordinary kriging 8.15 y1.59
Partial-heterotopic co-kriging: elevation 7.74 y1.30
Partial-heterotopic co-kriging: sorghum yield 8.12 y1.31
Partial-heterotopic co-kriging: EM31 vertical mode 7.60 y0.80

Ž .the clay data and the covariate data. Clearly from the results Table 5 , the use
of GAMs alone or as the regression component of the RK with terrain data is the
best techniquerancillary data combination. Artifacts in the clay prediction map
correspond to contour banks in the field where the soil was overturned during
construction. The terrain data obviously reflect the change in landform structure
Ž .Figs. 7 and 8 .

Although the simple neural networks used performed quite well, there is
potential for improvement through use of more sophisticated neural nets. For
example, the number of hidden layers could be increased to incorporate the
complexity in the soilrenvironment interrelations. Regression trees were the
poorest performing of the regression techniques in terms of RMSE. This may be
due to their predictions being composed of a small number of discrete values
equal to the number of terminating nodes. This gives unrealistic prediction
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Ž y1. Ž .Fig. 7. Prediction of clay content dag kg using a Generalised Additive Model GAM .

values, as it would be expected that in reality variation in clay content would be
continuous rather than discrete. As a result, there was some loss of information.

When considering the worth of the different types of ancillary data, the
elevation data is clearly the most valuable. This is simply because it quantifies
topography which is one of the main soil-forming factors. On a local scale
Ž .;40-ha area and in a stable landscape, such as the case here, other soil-for-
ming factors such as parent material and climate are quite uniform. Soil

Ž y1. Ž .Fig. 8. Prediction of clay content dag kg using Generalised Additive Model GAM and
kriged residuals.
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variation, therefore, could mainly be attributed to topographic effects. The EM
data is a new source of potentially valuable information for predicting soil
attributes, as exemplified by its enhancement of prediction precision of clay

Žcontent. Other than being a surrogate predictor of soil texture and of course
.electrical conductivity , it can potentially be used as a predictor of water holding

capacity and nutrient status of soil. Using all available ancillary information for
prediction produced reasonable prediction values, although it is not advanta-
geous because using terrain data alone produced better prediction values.

Using the yield data was the poorest performer of the ancillary data, even
worse than using ordinary kriging alone. Still, with the increasing popularity of
precision agriculture it is becoming the most readily available source of ancillary
information. Therefore, yield data, as a source of soil information, should not be
ignored especially in countries where soil information is extremely limited. The
poor performance is probably due to our using only one season of yield data in
the prediction model. Further studies using multi-year yield data would better
characterise the clay–yield relationship.

In conclusion, at the field scale the RK outperformed the purely geostatistical
techniques of kriging and co-kriging. In particular, the best regression compo-
nents of the RK were the GAMs and neural networks. This is very promising for
precision-agriculture practitioners who, in general, have insufficient soil data for
accurate variogram estimation and therefore are very much reliant on regression
techniques, e.g., GAMs. The most valuable ancillary information was the
elevation data which has been extensively used for prediction of soil attributes
Ž .e.g., Moore et al., 1993 . The EM data performed quite well demonstrating its
potential use as a crude real time ‘on-the-go’ soil sensor. Unfortunately, no
remotely sensed data was used for this study. As other sections of this paper
demonstrate, remote sensing is a valuable source of ancillary information for
soil prediction at the catchment and regional extents. As technology advances
result in increase in spatial resolution of remotely sensed digital images, there is
no reason the same cannot be said for the within-field soil variation modelling.

4.2. Sub-catchment extent

At the medium or catchment extent the soil survey information of Edgeroi
1:50,000 topographic map sheet was used. The Edgeroi area, located in the
lower Namoi valley in north-western NSW, was surveyed using an equilateral

Ž .triangular grid with a spacing of 2.8 km Fig. 5 so that site placement was
Ž .random with respect to landscape or landform McGarry et al., 1989 . The main

aim of the survey was to provide more accurate soil information for manage-
ment and extension purposes, but has now found a more useful purpose in
environmental modelling. At each site, the soil was characterised fully to a

Ž .depth of 2.6 m where possible . In using the data for our examples here, two
Ž .separate analyses were carried out, viz.: 1 Classification of soil into existing
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Ž .classes based on the Australian Soil Classification System Isbell, 1996 , and by
using exogenous attributes of Advanced Very High-Resolution Radiometric
Ž . Ž .AVHRR data and physiographic information. We termed this as allocation. 2
Prediction of topsoil CEC using the AVHRR data. This variable will be an
important input into a nutrient flux model for a total catchment management
project for the area.

4.2.1. Allocation into pre-existing classes using classification tree
The soil characteristic information was first used to group the soil individuals

at the sample locations into various classes at the suborder level of the
Ž .Australian Soil Classification Isbell, 1996 . The AVHRR coverage of the area,

recorded on May 22, 1996, during a fallow period, was obtained to maximise
the registration of soil exposure to the satellite radiometer and thus provide
optimal data for soil classification and prediction. The AVHRR data is at an
approximate spatial resolution of 1 km. Before using the satellite images the

Ždata were kriged onto a target grid of 200-m spacing Odeh and McBratney,
.2000 . In addition, a physiographical map of the area was digitised from the

Ž .geologic and geomorphic map produced by Ward personal communication
onto the same grid matrix. The features used to predict the soil classes were

Ž . Ž . ŽNDVI, mid infrared MIR , second thermal infrared band TIR2 , elevation also
.interpolated onto a 200-m grid , profile curvature, plan curvature and the

physiographic data. These features were used in a classification tree model to
rapidly predict the classes at the 200-m grid nodes, based on soil classes
obtained at 209 sites.

The resulting soil class map is shown in Fig. 9. As shown on the map, two
soil types, the Black Vertosol and the Grey Vertosol, are predominant in the
area, occurring mainly in the central to western parts of the sub-catchment. To
the east are mainly the Rudosols and the Kandosols, interspersed with Vertosols,
Red Dermosols and Red Chromosols. Thus, soil variability is much higher in
this part than to the west of it. Physiologically there are two main landforms in
the study area that are shaping the soil distribution patterns in the sub-catch-
ment: the plains to the west, and the hilly region in the east. Looking at the map
in Fig. 9 almost the whole of the plains are classified as Vertosols with few
patches of Dermosols and Kandosols and Kurosols occurring in slightly elevated

Ž .levees and prior-stream formations McGarry et al., 1989 . A variable mantle,
related to the baseline geology, underlies the hilly and undulating land to the
east. The soil types in this part are mainly a function of geology and topography,
hence, the high variability of soil types. Generally, the pattern of soil distribu-
tion is almost well aligned to the physiographical setting of the hills and valleys
in the area. Eventhough misclassification by our model was shown to be low
Ž .15% , the extent to which the classification tree model rapidly classified the
soil into classes based on coincidence of soil classes with physiographic unit,
topography and AVHRR attributes, will need to be corroborated further.
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Fig. 9. Predicted soil classes in accordance with the Australia Soil Classification in the Edgeroi
area.

4.2.2. Spatial prediction of CEC from AVHRR data
The CEC for the Edgeroi area was also predicted from the AVHRR data onto

Ž .the same grid spacing as described above. The CEC for the topsoil 0–0.1 m
Ž .was determined by McGarry et al. 1989 . As was the case with the local extent

several spatial prediction models were tested in predicting the topsoil CEC in
Ž Ž ..order to determine the most accurate, based on RMSE Eq. 4 and the least

Ž Ž ..biased ME — Eq. 5 . To test the models, 50 out of a total of 229 CEC
records were set aside for validation. The remaining 189 were used in the
following prediction models:

Ø MLR using a combination of AVHRR data and land attributes
Ø Kriging based on IRF-1
Ø KED using each of the elevation or AVHRR bands: MIR, TIR and NDVI, as

the external drift
Ø RK, combining MLR with ordinary kriging of the MLR residuals.

As previously explained, RK combines the results of prediction by MLR and
those of ordinary kriging of the MLR residuals in order to minimize the

Ž .uncertainty of the regression model Odeh et al., 1995 .
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Initially, all bands of AVHRR data and landform attributes were used to
determine the best MLR model. Based on a stepwise regression procedure the
following formula was selected as the best MLR model, using the prediction set
of 189:

CECsy1315.71y1.56= redy0.65=NIRy0.66=MIRq1.44

=TIR2q0.30=Elavationq2837.10=Plan Curvature

q4364.57=Profile Curvature 6Ž .

As for the RK prediction, the MLR residuals were interpolated onto 200-m grid
nodes, following the MLR model prediction onto the same grid nodes. The two
values, i.e., the MLR model value and the residual value were summed at each
node to give the new predicted CEC value. The aim was to minimise the
uncertainty due to MLR model.

Drift identification was carried with each of the predictor variables used in
Ž .Eq. 6 to test for a common trend with our target variable, the topsoil CEC. It

was found that only the MIR, TIR2, NDVI and elevation showed some trend
with CEC.

The results of prediction performance by the methods are shown in Table 6.
Of all the methods used, KED with elevation as the external drift and IRF-1

Ž q .produced the least RMSE 66 and 86 mmol rkg, respectively . The better
performance by the two methods is probably due to the linear trend of CEC
from east to west, which is well modelled by the intrinsic random function and
the elevation. It is obvious that KED, with NDVI as the external drift, was the

Ž q .poorest performer RMSEs147.6 mmol rkg , followed by KED with MIR as
Ž q .the external drift RMSEs133.50 mmol rkg . Comparing the averages of

actual and predicted CEC values in Table 6, it is clear that IRF-1 and KED with
elevation as the external drift, are further confirmed to be the best predictors,
with the average produced by each of these methods being closest to the actual
average. One interesting point is that all seven methods used, on the average,
over-predicted topsoil CEC. This is evident by their average predicted CEC
values at the validation sites being lower than the average of the actual values.
From the ME values shown in Table 6, it also clear that IRF-1 and all the KED
models also over-smoothed the prediction surface, more so than MLR and RK.

Two examples of topsoil CEC maps predicted by two methods, KED with
Ž . Ž .elevation as the external drift and RK, are shown in Fig. 10 a and b ,

respectively. The two maps show remarkably similar patterns of variation of
topsoil CEC across the sub-catchment. The CEC trend, increasing from east to
west, is also evident. This confirms that the model that best fit this trend
provides the most precise predicted topsoil CEC and, in this case, the method is
KED using elevation as the external drift. Relief of the area, best described by
elevation, increases from the northwest to southeast, which is well reflected in
the distribution patterns of topsoil CEC shown in Fig. 10. Unreliable CEC
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Table 6
Summary statistics of actual and the predicted values of CEC by different methods at the validation set extracted from the sub-catchment data

Actual IRF-1 KED Elevation KED MIR KED NDVI KED TIR2 MLR RK
qŽ .Minimum mmol rkg 101.15 45.69 26.01 53.77 62.11 56.67 142.20 69.62
qŽ .Maximum mmol rkg 488.05 493.43 486.40 654.79 516.32 532.20 443.09 460.86

qŽ .Mean mmol rkg 344.76 325.55 329.96 318.96 311.76 318.38 320.59 323.33
Ž .Mean Error ME of – 19.2 14.8 25.8 33.0 26.4 24.17 21.42

qŽ .prediction mmol rkg
Root Mean Square Error – 85.9 66.2 115.3 147.6 118.0 108.07 95.81
Ž .RMSE of prediction

qŽ .mmol rkg
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Ž . Ž .Fig. 10. Predicted CEC mmolrkg for the Edgeroi area using a Kriging with elevation as the
Ž . Ž .external drift and b Regression kriging RK .

values are predicted in some parts of the eastern section of the sub-catchment.
This is true for all the methods, but less so for KED with elevation as the

Ž .external drift Fig. 10a . The high prediction error in this section of Edgeroi is
probably due to different topology in the study area, which results in higher



( )A.B. McBratney et al.rGeoderma 97 2000 293–327 321

model uncertainty in the section than in the western part. However, the models,
Ž .especially KED with elevation as the external drift Fig. 10a , have produced

reasonable predictions of CEC values for much of the Edgeroi areas suitable for
further analysis for sub-catchment management.

4.3. Regional extent

The example for regional survey is based on the combined area of the Lower
Macintyre, Gwydir and Namoi valleys, including data from the detailed survey
of the Edgeroi area. The total area covered is approximately 45,600 km2. This
region has been sampled extensively for a major study of irrigated cotton

Ž .regions of eastern Australia Fig. 5 . The objective was to obtain a soil database
so that a quantitative statement on the status of soil could be made. For this
purpose, a total of 734 locations were visited and sampled.

The main purpose of the project was to predict several soil attributes from
Ž .samples taken from 734 sites Fig. 5 . This is required for the basic regional

planning and total catchment management strategy being envisaged for the
region. We provide a simple example, again with spatial prediction of the
topsoil CEC. First, the AVHRR and elevation data were interpolated onto a grid
matrix of 500-m spacing. This resolution is considered more than adequate for a
regional survey. Again, we used the AVHRR data combined with the elevation
to predict the CEC over the entire region using only the MLR and RK.

Fig. 11 shows the map of CEC predicted by the RK model. The distribution
patterns highlight the influence of physiography on the soil types — and hence
the CEC. Clearly the light-textured soil on the levees are identified by relatively´

Ž q .low CEC CEC-150 mmol rkg . These areas are depicted by dark grey to
dark patches on the map in Fig. 11, which represent areas of relatively large
CEC values, are mainly low depressions which are components of the clay

Ž .plains, mostly consisting of cracking clays Stannard and Kelly, 1977 .
ŽThe predicted CEC values in some areas of the map these are specified as

.‘‘unreliable’’ in Fig. 11 are spurious to say the least. This is especially true for
the eastern part of the map. The eastern section is the fringe of the Great
Dividing Range, which is undulating and hilly. The landforms are quite dissimi-
lar to the clay plains. This accounts for low precision of prediction for the
section as the models are not suitable for topsoil CECrancillary variables
interrelationships. The section was also scantly sampled, or not sampled at all. It
thus shows how poor the models, such as MLR and RK, are in extrapolating to
areas outside the sampled region. An area just east of Pilliga is characterised by

Ž .very low topsoil CEC Fig. 11 . This area is underlain by Pilliga sandstone,
which produced some light-textured soil types characterised by low CEC.
Otherwise, the topsoil CEC is generally large and adequate as a soil quality
indicator for soil nutrient-holding capacity for plant growth. The map generally
depicts a reasonably acceptable distribution of CEC for the region, adequate for
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Ž .Fig. 11. Predicted CEC across the three valleys, using regression kriging RK .

regional planning and for the elucidation of areas of low CEC, which need
further investigation.

5. General conclusion

Application of each of the pedometric techniques depends on the purpose,
resolution and setup of the survey as the ultimate use of soil survey information
determines the accuracy required. Different techniques produce different error of
interpolation. For example, the accuracy of soil information required for field-
scale is clearly different from that which is required for total catchment
management. Other examples of applications of pedometric methods in analysing



( )A.B. McBratney et al.rGeoderma 97 2000 293–327 323

soil survey information for various purposes at the national or continental scale
Ž .exist in literature e.g., Wendland et al., 1998; Stoorvogel and Smaling, 1998 .

In all the cases, since the purposes are different, the risk of taken wrong
decisions due to survey error is also different. Therefore, the pedometric
techniques described above cannot just be applied to any situation without
consideration of the specific needs and appropriateness of the inherent assump-
tions of the techniques. Table 7 presents a summary of examples as a guide for
selecting the best pedometric technique, given the purpose of the soil survey, the
precision required, the scale of the survey and the final pixel resolutions of the
resulting thematic maps. These techniques need to be incorporated into the

Ž .mainstream GIS packages for appropriate geo statistical analysis prior to GIS
operations for landrsoil quality analysis, soil contamination and pollution

Ž .studies, various decision maps including precision agriculture and total envi-
ronmental management.

From all these examples and new methods being generated, it appears that:

Ø Pedometrics and pedology are growing closer together.
Ø Fuzzy sets and pedodiversty analyses offer new techniques.
Ø There is a range of new data sources, and proximal sensing is one of those

that are being developed.
Ø Hybrid methods of CLORPT and geostatistics offer powerful spatial predic-

tion methods, especially up to catchment and regional extent.

Finally, although all these techniques allow better use of existing qualitative
and quantitative soil information there is a danger that new data are not
generated to test models. We shall always need more new soil data, and this
should be part and parcel of quantitative studies.
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