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France
Reconnaissance soil maps at 1:250,000 scale are the most detailed source of soil information for large parts of
France. For many environmental applications, however, the level of detail and accuracy of these maps is insuffi-
cient. Funds are lacking to refine and update these maps by traditional soil survey. In this study we investigated
themerit of digital soil mapping to refine and improve the 1:250,000 reconnaissance soilmap of a 1580 km2 area
in Haute-Normandie, France. The soil map was produced in 1988 and distinguishes nine soil class units. The ap-
proach taken was to predict soil class from a large number of environmental covariates using regression tech-
niques. The covariates used include DEM derivatives, geology and land cover maps. Because very few soil point
observations were available within the area, we calibrated the regression model by sampling the soil map on a
grid.We calibrated threemodels: classification tree (CT), multinomial logistic regression (MLR) and random for-
ests (RF), and used thesemodels to predict the nine soil classes across the study area. The new and originalmaps
were validated with field data from 123 locations selected with a stratified simple random sampling design. For
MLR, the estimate of the overall puritywas 65.9%, while that of the reconnaissancemapwas 55.5%. The difference
between the purity estimates of these maps was statistically significant (p = 0.014). The significant improve-
ment over the existing soil map is remarkable because the regression model was calibrated with the existing
soil map and uses no additional soil observations.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Reconnaissance soil maps at 1:250,000 scale are the most detailed
source of soil information for large parts of France. The geographical
coverage of 1:250,000 soil maps in mainland France is about 75% of
the territory, while more detailed soil maps only cover about 35% of
the country. For many environmental applications (e.g., threats to
water quality, pollution of soils, soil erosion by water or wind, loss of,
or damage to, rare soils, loss of terrestrial carbon store, loss of soil
biodiversity; see a list of applications in France in Richer de Forges and
Arrouays (2010)), however, the level of detail and accuracy of
1:250,000 maps is insufficient. Funds are lacking to refine and update
these maps by traditional soil survey. This lack of detailed soil data
and funds to increase resolution and accuracy through conventional
soil survey is widely spread over the world (Hartemink, 2008).

Digital soil mapping (DSM) techniques (McBratney et al., 2003)
have been proposed as a tool to update (Kempen et al., 2009) or disag-
gregate soil class maps (Häring et al., 2012; Nauman and Thompson,
2014; Subburayalu et al., 2014; Odgers et al., 2014), or to create new
maps (Adhikari et al., 2014). Kempen et al. (2012a) show that DSM
can be an efficient alternative to traditional soil survey for updating
soil class maps. Various methods for calibration and mapping using
DSM have been used, including expert based rules (Lagacherie et al.,
1995; van Zijl et al., 2014), fuzzy logic systems (MacMillan et al.,
2007; Zhu et al., 2001; Yang et al., 2011), neural networks (Behrens
et al., 2005) and various methods of classification and regression
(Carré and Girard, 2002; Grinand et al., 2008; Kempen et al., 2009;
Häring et al., 2012; Adhikari et al., 2014; Nauman and Thompson,
2014; Subburayalu et al., 2014; Odgers et al., 2014).

DSM models are typically calibrated with observed point data
(e.g., Häring et al., 2012; Kempen et al., 2012b; Adhikari et al., 2014).
However, when resources for collecting new field point data are limited,
obtaining a calibration dataset by sampling an existing soil map might
be an attractive alternative, even though mapped soil properties and
soil types are no substitute for real observations. This approach is
taken by, for example, Lagacherie et al. (1995), Grinand et al. (2008),
Debella-Gilo and Etzelmüller (2009), and more recently by Nauman
and Thompson (2014), Subburayalu et al. (2014) and Odgers et al.
(2014). However, some of these studies did not validate the resulting
maps with independent field data (Debella-Gilo and Etzelmüller,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.geodrs.2014.07.001&domain=pdf
http://dx.doi.org/10.1016/j.geodrs.2014.07.001
http://dx.doi.org/10.1016/j.geodrs.2014.07.001
http://www.sciencedirect.com/science/journal/


Fig. 1. Location of the study area.
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2009; Grinand et al., 2008; Lagacherie et al., 1995), which makes it dif-
ficult or impossible to assess their accuracy. Others focused on a single
prediction method (Grinand et al., 2008; Häring et al., 2012; Adhikari
et al., 2014; Subburayalu et al., 2014; Odgers et al., 2014), and only
Nauman and Thompson (2014) compared the accuracy of the digital,
disaggregated soil class map with the legacy soil map. And none of
these studies used independent validation collected with a probability
sampling design that allows for statistically valid and unbiased accuracy
assessment and model comparison.

In this paper we use multinomial logistic regression and two tree-
based methods (classification trees and random forests) to investigate
the merit of DSM to refine and improve the 1:250,000 reconnaissance
soil map of a 1580 km2 area in Haute-Normandie, France. We sampled
the reconnaissancemap and used this sample to calibrate the prediction
models. Ground truth validation data were collected using probability
sampling to evaluate whether i) the pedometric soil maps are more ac-
curate than the original map, and ii) there are differences in accuracy
between the three pedometric methods. This will provide insight if
this method is an attractive alternative to traditional soil survey for
updating and upgrading soil class maps in France.

2. Materials and methods

2.1. Study area

The study area is located in North-West France, along the Channel
coast (Fig. 1). In this region, the parent materials are mainly loess de-
posits, chalk, sands and clays and more locally sand and gravel from al-
luvial deposits. Two main loess plateaus are located in the east and the
north-westwith elevations ranging from200m to 250mand from80m
to 180 m, respectively. Their land use is mainly intensive agriculture.
Chalk soils occur mainly on steep slopes surrounding the plateau and
are mostly occupied by forest. The south-eastern part is characterized
by gently undulating relief. The soils are developed on sands and clays
and land use is mainly permanent grassland. The climate is oceanic.
Themean annual temperature is about 9 °C and the total annual precip-
itation is about 800 mm. A description of the nine soil classes of the
1:250,000 reconnaissance soil map of the area (Wolf et al., 1998) is
given in Table 1.

2.2. Environmental ancillary data

Classical relief attributes were derived from the SRTM 90 m DEM.1

Parent material was represented by a harmonized 1:50,000 lithological
1 http://srtm.csi.cgiar.org/.
map that was synthesized from all geological surveys available for the
region (Quesnel et al., 2007; Van Lint et al., 2003). Land use information
was provided by the Corine Land Cover 2006 European database
(Commission of the European Community, 1993) and climate informa-
tion by the Ecoclimap database, a global database of land surface param-
eters at 1 km resolution (Masson et al., 2003). An exhaustive list of the
19 covariates used and their resolution or map scale is given in
Table 2. Several of the DEM-derived covariates are (strongly) mutually
correlated. Furthermore, cross-tabulating the categorical covariates
with the reconnaissance soil map (from which the calibration
points are derived) shows presence of zero-cell counts (Hosmer
and Lemeshow, 2000). This means that the frequency distributions in
the cross-table contain one ormore zeros, i.e. not all combinations of pre-
dictor categories and soil classes occur. The presence of zero-cell counts
causes numerical instabilities during modeling and should be avoided
(Hosmer and Lemeshow, 2000). Hosmer and Lemeshow (2000) suggest
combining classes of the categorical predictors in a sensibleway to handle
the zero-cell problem. However, this does not solve the issue about the
correlated covariates. We, therefore, decided to convert the 19 covariate
layers to 59 principal components (each class of the categorical covariates
becomes one component after transformation), which are candidate pre-
dictors for the models.

The 1:250,000 reconnaissance soil map and the geologicalmapwere
rasterized to 90 m resolution grids, corresponding to the resolution
of the SRTM-derived terrain parameter grids. The Ecoclimap was
resampled from 1 km to 90 m resolution.

2.3. Soil point observations

The point dataset for model calibration was obtained by sampling
the reconnaissance soil map using a systematic, square grid with a ran-
dom origin and 500 m grid spacing. The soil class was extracted at the
grid nodes, which resulted in a sample of 6323 points.

2.4. Models

Three different methods were applied: multinomial logistic regres-
sion (MLR), classification tree modeling (CT), and random forests (RF).

2.4.1. Multinomial logistic regression
The logisticmodel belongs to the family of generalized linearmodels

and is used when the response variable is categorical (Hosmer and
Lemeshow, 2000). Suppose that variable Y represents the observed
soil class at a sampling location, which can assume any of K categories,
where K is the number of soil classes. In case K equals 2, Y has a

http://srtm.csi.cgiar.org/


Table 1
Description of the nine soil classes of the original reconnaissance soil map.

Code French classification soil type WRB soil type Soil taxonomy Description

LC Néoluvisols Luvic Cambisols Hapludalf Thick loamy soils developed on loess deposit
HLg Luvisols rédoxiques Haplic Luvisols Gleyic Aquic Hapludalf Thick redoxic loamy soils developed on loess deposit
RP Planosols typiques sédimorphes Ruptic Planosols Paleudalf Shallow loamy soils over flint clay
CL Colluviosols limono-pierreux Colluvic Leptosols Eutrochrept Shallow stony loamy soils over other materials
RL Rendosols issus de craie Rendzic Leptosols Lithic Udorthent Shallow calcareous loamy soils developed on chalk
F Fluviosols Fluvisols Udifluvent Alluvial soils
Se Rédoxisols sablo-argileux Stagnosols Endogleyic Typic Haplaquept Redoxic sandy–clayey soils
G Réductisols argileux lourds Gleysols Typic Haplaquept Reductic heavy clay soils
S Rédoxisols argileux Stagnosols Humic Haplaquept Redoxic clayey soils
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Bernoulli (binomial) distribution with two possible outcomes y1 and y2.
The probability of occurrence of y1 is π1 and that of y2 is π2 = 1 − π1.
Logistic regression relates probability π1 to a set of predictors using
the logit link function:

logit π1ð Þ ¼ log
π1

π2

� �
¼ log

π1

1−π1

� �
¼ x0β ð1Þ

where x is a vector of predictors and β is a vector of model coefficients
that are typically estimated by maximum likelihood, log is the natural
logarithm. The ratio π1

π2
is referred to as the odds. From Eq. (1) it follows

that:

π1 ¼ exp x0β
� �

1þ exp x0βð Þ : ð2Þ

The binomial logistic regression model is easily generalized to the
multinomial case. If there are K soil classes, then there are K probabilities
of occurrence π1,…,πk. One class is chosen as the reference class. Logits are
formed that compare the other classes to it. Analogous to binomial logistic
regression, the ratios πk

π1
(k = 2,…,K) are modeled by means of exp(x′βk)

where k = 1 is the reference class. From the constraint ∑ k = 1
K πk = 1

it follows that the probability of soil class k equals:

πk ¼
exp x0βk

� �
1þ

XK
k¼2

exp x0βk

� �
:

ð3Þ

We applied theMLRmodel using themultinom function of the pack-
age nnet (Venables and Ripley, 2002) in R (R Development Core Team,
Table 2
Set of ancillary variables used for modeling and their resolution/scale.

Dataset Resolution/map scale

Geology map (geol; 17 classes) 1:50,000
Digital Elevation Model (SRTM) 90 m

Terrain attributes
Multiresolution Valley Bottom Flatness (MRVBF) 90 m
Slope 90 m
Aspect (EXP) 90 m
Global curvature (COURB) 90 m
Horizontal curvature (COURBL) 90 m
Transversal curvature (COURBT) 90 m
Roughness standard error on a 3 × 3 pixel window (SDT) 90 m
Roughness min–max on a 3 × 3 pixel window (PLAGE) 90 m
Topographic Position Index (TPI) 90 m
Landform Classification on a 3 × 66 pixels window (LCA) 90 m
Landform classification on a 1 × 66 pixels window (LCB) 90 m
Beven Index (BEV) 90 m
Distance to the nearest stream (DPPR) 90 m
Height to the nearest stream (HPPR) 90 m
Network persistence and development index (IDPR) 90 m

Land use
Corine Land Cover (CLC, 21 classes) 1:100,000
Ecoclimap (ECOCL, 5 classes) 1 km
2013). Selection of the covariate principal components was done with
a manual step-wise procedure. The components were added sequen-
tially to theMLRmodel, startingwith thefirst component. A component
was accepted as covariate if its selection resulted in a decrease of the
Akaike Information Criterion (AIC) value (Webster and McBratney,
1989). After testing the last component, backward elimination was
carried out, starting with the first component of the selected model.
The elimination of a selected component was accepted if this resulted
in a decrease of the AIC.

2.4.2. Classification trees
Initially developed by Breiman et al. (1984), the non-parametric

classification tree algorithm partitions the training dataset, in our case
the soil point dataset, recursively into increasingly homogeneous sub-
sets (Strobl et al., 2009). The covariates are used as partitioning vari-
ables, and each binary split is chosen in such a way that it maximizes
the reduction of an impurity measure, such as the Shannon entropy,
the Gini index or the classification error (Hastie et al., 2009). For contin-
uous covariates the split point is a threshold value, while categorical
covariates are split by grouping the covariate classes into two groups.
To avoid overfitting, trees are pruned using cost-complexity pruning
(Hastie et al., 2009; Venables and Ripley, 2002). Here we used the
1-SE rule as defined by Venables and Ripley (2002) to determine the
cost-complexity parameter, which was set to 0.001. Predictions at the
terminal nodes of the tree are based on majority. The algorithms were
run using rpart package (Therneau and Atkinson, 2013; Venables and
Ripley, 2002). The minimum number of observations for each node to
be considered for a split (minsplit argument)was set to 20, and themin-
imum number of observations in any terminal node (minbucket argu-
ment) was set to 10. The Gini index was used as an impurity measure
for splitting (this is the default in rpart). Since correlated covariates
and zero-cell counts are less of a problem for CT than for MLR, the
non-transformed covariates were used as input.

2.4.3. Random forests
A random forest consists of an ensemble of classification or regres-

sion trees (Breiman, 2001; Strobl et al., 2009). In our case classification
trees are used. Each of these trees is generated by recursive binary
partitioning as described in Section 2.4.2 above. Random forests com-
bine bootstrap sampling, aggregation (bagging) and random covariate
selection for partitioning, to grow a forest of trees. Each tree in the forest
is grown from a bootstrap sample drawn from the training data (in our
case the soil point observations) with replacement. For each split, a ran-
dom set of covariates is selected. From this set, the best covariate is cho-
sen, i.e. the one that results in the largest reduction of the impurity
index. The class prediction at a new location is based on the majority
vote of the individual tree predictions (Breiman, 2001; Hastie et al.,
2009). An estimate of the classification error is obtained by predicting
at the training sites not included in the bootstrap sample, the so-called
‘out-of-bag’ (OOB) data. The OOB predictions are aggregated after
which the OOB-error is computed. Since the OOB error sample is almost
identical to that obtained byN-fold cross-validation (Hastie et al., 2009),
no separate cross-validation is required.
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Random forest modeling was applied with the randomForest pack-
age (Liaw andWiener, 2002) in R. Like for CT, non-transformed covari-
ates were used as input. To run the model, two parameters must be
specified: the number of randomly selected variables to try at each
split (mtry) and the number of trees to grow (ntree). For classification,
the default value formtry is the square root of the total number of covar-
iates (Hastie et al., 2009). Strobl et al. (2009) recommend to use a larger
number of randomly selected covariates when the covariates are
(strongly) correlated. We, therefore, set mtry to half the total number
of covariates (rounded downward). The parameter ntree was set to
1000. The minimum size of terminal nodes (nodesize) was set to 10.

2.5. Model validation

Cross-validation for the MLR and CTmodels was 10-fold. For RF, the
OOB-error is used as an internal cross-validation measure. By default,
the bootstrap sample selects 63.2% of the sampling sites for calibration.
The OOB-error is computed from the remaining samples. In addition to
cross-validation, the predictions were validated with an external (inde-
pendent) validation sample as well.

2.5.1. Sampling design
The soil maps were validated with independent data collected using

a stratified simple random sampling design (Brus et al., 2011). The nine
map units of the 1988 reconnaissance soilmap formed the strata. A total
of 123 sampling locations were selected, with per-stratum sample sizes
proportional to their surface areas. Sampling locations where permis-
sion was denied or proved otherwise impossible to sample were re-
placed with randomly selected locations within the same stratum. Soil
type was described using auger borings. Each identified horizon was
sampled and analyzed for pH, C, CaCO3 and particle size distribution,
and the allocation to classes was done by expert judgment on the
basis of soil description and analyses, without knowing the location of
the site on the pre-existing map. Seven of the 123 sampling locations
were not allocated to any of the soil classes. Fieldwork took place in
November 2012.

2.5.2. Estimation of map quality measures
We describe the accuracy measures for soil class maps only briefly.

For an elaborate review, including the estimation of these measures
and associated estimation variances, we refer to Brus et al. (2011) and
de Gruijter et al. (2006).

We consider three map quality measures for the soil class maps: the
overall purity, themap unit purity (user's accuracy) and class represen-
tation (producer's accuracy) (Brus et al., 2011; Stehman, 1997). Each of
these properties can be derived from an error matrix (cross-tabulation
of observed versus predicted soil class) and is directly interpretable in
terms of a probability of occurrence of a misclassification. The 7 non-
allocated sampling locations were taken into account in the measure-
ments of map quality. The overall purity is defined as the proportion
of the mapped area in which the predicted soil class, which is the soil
class depicted on the map, equals the true soil class, i.e. it is the areal
proportion correctly classified. To estimate the overall purity an indica-
tor variable is created, which takes the value 1 if the observed soil class
equals the predicted soil class, and 0 otherwise. For each stratum the
average of this indicator is computed. The overall purity is estimated
as the weighted average of the stratum purities, with weights equal to
the relative areas of the strata.

The map unit purity defines the purity on the level of the map units
(individual soil classes). The map unit purity for mapped soil class k is
the proportion of the area of the respectivemap unit correctly classified.
If the map units were used as the sampling strata, then the map unit
purities are estimated by the strata means (in the case of the reconnais-
sance soil map). If the map units do not equal the strata (in the case of
theMLR, CT and RFmaps), then themap unit puritiesmust be estimated
by the ratio estimator. This estimator is used for purity estimates of
so-called domains (sub-areas of interest) (Brus et al., 2011; Kempen
et al., 2009). The class representation for soil class k is the proportion
of the area where in reality soil class k occurs that is also mapped as
class k. Class representations are also estimated by the ratio estimator.

We compared the accuracies of the soilmaps by introducing variable
qhi defined as yhim1 − yhi

m2, where yhi is an indicator that takes value 1 if
the predicted soil class at validation location i in stratum h equals the
observed soil type and 0 otherwise. Superscripts m1 and m2 indicate
the twomaps that are being compared. The variable qhi can have values
of −1, 0, and 1. The mean purity difference (MPD) of two soil maps is
estimated in a similar fashion as the overall purity, by summing over
all strata and all locationswithin a stratum. To testwhether the estimat-
ed MPD differs significantly from 0, we assumed that the estimated
MPD follows a normal distribution.

3. Results

3.1. Prediction models and maps

For the MLRmodel, twelve out of 59 PCs were selected. PC1 was re-
lated to elevation (SRTM) and terrain attributes, while PC2 to PC11 all
included geological classes and various terrain attributes and/or land
cover classes. Some PCs were directly related to one geological class:
loess deposits (PC2), colluvial loam on slopes (PC4), sedimentary clay
(PC5) and alluvial deposits (PC9). PC12was directly related to landform
classification (lcb).

The CT is shown in Fig. 2. After pruning, the fitted CT had 35 splits
and 36 terminal nodes. Ten out of the nineteen covariates were used
to construct the tree. Geology (parent material) and elevation are the
dominant splitting covariates at the upper levels of the CT, whereas
DEM derivatives are used as splitting covariates at the lower levels of
the CT. The ecoclimate map is used for only one split. The land cover
map is not used for splitting. The first three splits (using geology twice
and elevation once) increase the internal purity from 22.1% (obtained
by predicting the most frequent soil class of the calibration data) to
50.4%. The CT and RF models can be compared using the calculation of
thewell-known variable importance (VI)which is ameasure of the con-
tribution a covariate canmake in prediction In the case of CT, the reduc-
tion in the loss function (e.g. mean squared error) attributed to each
variable at each split is tabulated and the sum is returned.

In the case of RF, for each tree, the prediction accuracy on the out-of-
bag portion of the data is recorded. Then the same is done after permut-
ing each predictor variable. The difference between the two accuracies
is then averaged over all trees, and normalized by the standard error.
To make them comparable in a unique plot, all measures of importance
are scaled to have a maximum value of 1. The VI plots of CT and RF are
shown in Fig. 3. They show that for both models, geology and elevation
are themost important covariates followed by various DEM derivatives.
Curvature seems to have more influence for RF than CT. Land cover and
climate data do not have a strong influence on the spatial distribution of
soil classes. Indeed, climate does not exhibit strong gradients in this area
and the predominance of geology and elevation is consistent with the
sedimentary origin of the soil parent materials.

The three prediction maps and the reconnaissance soil map look
globally similar (Fig. 4). The shape and size of the large loamy plateau
of the north-western part with Luvic Cambisols (LC) and the area with
Stagnosols Endogleyic (Se) are nearly the same. On the contrary, notice-
able differences occur for the western loamy plateau with Haplic
Luvisols Gleyic (HLg) and for the Ruptic Planosol (RP) area. Overall,
the prediction maps seem to produce smaller clusters of grid cells and
a more complex spatial organization than the original reconnaissance
soil map. When the prediction maps are compared, then MLR seems
to predict the most intricate spatial pattern, followed by CT and then
RF. The RF and CT maps are more similar to each other than to the
MLR map, which is not surprising since the models are more similar
to each other than to MLR. The spatial patterns in the RF map are



Fig. 2. Relative importance of the predictors for the random forest (RF) approach and the classification tree approach.
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somewhat less intricate than for the CT map. This is likely the result of
fitting a large number of trees in RF and then predicting the soil class
based on a majority vote from the individual tree predictions,
which filters out some of the ‘noise’ predicted by CT. CTs are
known to be unstable and can have large variance: a small change
in the data can result in a very different series of splits (Hastie
et al., 2009). Despite the differences in predicted spatial patterns,
the predicted areas are roughly similar (Table 3). Compared with
the reconnaissance map, the models predict larger areas with RL
(Rendzic Leptosols; +14.5% for RF, +16.4% for CT, +20.4% for
MLR) and HLg (Haplic Luvisols Gleyic; +14.5% for RF, +16.4% for
CT, +20.4% for MLR), and smaller areas with CL (Colluvic Leptosols;
−26.6% for RF, −28.8% for CT, −46.0% for MLR) and RP (Ruptic
Planosols; −25.3% for RF, −22.7% for CT, −23.3% for MLR). In par-
ticular, some very large polygons of Ruptic Planosols are consider-
ably reduced in smaller clusters of grid cells.
Fig. 3. The fitted classifi
3.2. Validation

3.2.1. Overall purity
Table 4 presents the validation results (overall purity estimates) for

the reconnaissance soil map and the three DSM methods.
Based on cross-validation, RF gives the most accurate map (68.0%),

followed byCT (63.6%), andMLR (58.8%). The results of the external val-
idation show that for CT and RF these accuracy measures are over-
optimistic. We had expected this for MLR as well, but strangely in this
case the external purity is 7% larger than the cross-validation purity.
We were unable to pinpoint the cause of this difference. The cross-
validation purity falls within the 95% confidence interval of the estimat-
ed external purity so the observed purity differencemight be attributed
to chance.

The best validation result was obtained forMLR. The overall purity is
65.9%, which is 10.4% larger (p = 0.014; Table 5) than that of the
cation tree model.



Fig. 4. Reconnaissance soil map (a) and maps of predictions obtained with the three regression models: multinomial logistic regression (b), classification tree (c) and random forests (d).
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reconnaissance map. The overall purity of the RF model was 63.5% and
that of the CT model 61.3%. Both CT (p = 0.065) and RF (p = 0.029)
performed better than the reconnaissance map. Differences in overall
purity between the DSM models were not statistically significant
(Table 5).

3.2.2. Map unit purity and class representation
Table 6 presents the confusionmatrices of observed versus predicted

soil classes. The soil classes exhibiting a high degree of confusion with
others are the Luvic Cambisols (LC) the Ruptic Planosols (RP) and the
Rendzic Leptosols (RL). The observed RP are spread over seven map
units for MLR and CT and sixmap units for RF. Conversely, the predicted
RL led to confusion with five to seven other observed classes depending
on the method used. The Luvic Cambisols are mainly confused with
Ruptic Planosols. Indeed these soils tend to occur together in the land-
scape. The LC occupy the flat loamy plateau whereas RP are located on
slopes at the border of the plateaus. Similarly, HLg are mainly confused
with LC and RP. BothHLg and LC are located on loamy plateaus and their
difference is mainly linked to small differences in topography. Both are
frequently surrounded geographically by RP. Soil classes F, Se, G and S
are less confused with other classes, which is consistent with the fact
that these are all strictly linked to distinct geological origins.

The map unit purities and class representation measures are
presented in Table 7. Using DSM, map unit purities increase for six or
Table 3
Absolute (km2) and relative (%) areas of the mapped soil classes. The ‘true’ (observed)
areas are estimated from the validation probability sample.

Observed Reconn.
map

MLR CT RF

km2 % 95% CI (%) km2 % km2 % km2 % km2 %

LC 333 21.1 17.4–24.8 346 21.9 367 23.2 353 22.3 370 23.4
HLg 115 7.3 5.0–9.7 173 10.9 197 12.5 217 13.7 195 12.3
RP 283 17.9 14.4–21.4 153 9.7 117 7.4 118 7.5 114 7.2
CL 77 4.9 2.9–6.8 139 8.8 75 4.7 99 6.3 102 6.4
RL 231 14.6 11.4–17.8 325 20.6 391 24.7 378 23.9 372 23.5
F 115 7.3 4.9–9.7 122 7.7 119 7.5 107 6.8 112 7.1
Se 155 9.8 7.1–12.4 174 11.0 171 10.8 171 10.8 182 11.5
G 63 4.0 2.3–5.9 67 4.2 53 3.4 58 3.7 55 3.5
S 115 7.3 5.0–9.7 82 5.5 90 5.7 77 4.9 79 5.0
Other 90 5.7 3.6–7.8 – – – – – – – –
seven out of nine map units. The tree-based maps show somewhat
less variation in map unit purities than the MLR map. The prediction
performance of the pedometric models and reconnaissance map
might be more easily compared using the overall purities of the sam-
pling strata (Table 8), because in that case predictions for the same spa-
tial entities are compared. Note that the strata are equal to themapunits
of the reconnaissance map. For the areas classified as Luvic Cambisols
(LC), Ruptic Planosols (RP), Colluvic Leptosols (CL), Fluvisols (F) and
Stagnosols (Se) on the reconnaissance map, the DSM models predict
the soil class distribution considerably better than the reconnaissance
map. Table 8 also shows that differences in overall purity between
MLR and the tree-based methods are mainly attributed to more accu-
rate predictions by the MLR model in strata LC, F, and Se.

Class representations increase for six (MLR) or seven (CT, RF) out of
the nine soil classes compared to the reconnaissance map. Both DSM
methods and the reconnaissance map have difficulty predicting the oc-
currence of the RP class, which has the smallest class representation.
The observed RP are spread over seven predicted map units (Table 6).
This indicates that the occurrence of flint clay in deep layers, that char-
acterizes the RP class, cannot be adequately predicted. This could be due
to the fact that the occurrence of RP is not well depicted by the recon-
naissance map. As the reconnaissance map is used for calibration, then
if RP is not accurately mapped, similar inaccuracies will result using
the DSM methods. Indeed, here we reach the limits of improvements
that can be obtained by calibration of a regression model with training
data obtained from a reconnaissance map. Classes CL and F show
the largest improvement in class representation compared with the
Table 4
Results of validation of the reconnaissance soil map and the multinomial logistic regres-
sion (MLR), classification tree (CT) and random forest (RF) prediction maps, and results
of internal cross-validation. The se is the estimated standard error of the overall purity,
l-90% CI is the lower boundary value of the 90% confidence interval (CI) of the overall pu-
rity, and u-90% CI is the upper boundary.

Reconnaissance map MLR CT RF

External validation
Overall purity (se) 55.5 (4.4) 65.9 (4.2) 61.3 (4.3) 63.5 (4.3)
l-90% CI 48.3 59.0 54.2 56.4
u-90% CI 62.7 72.8 68.3 70.6

Cross-validation
Overall purity – 58.8 63.6 68.0



Table 5
p-Values of the statistical test for the differences in overall purity between the reconnais-
sance, multinomial logistic regression (MLR), classification tree (CT) and random forest
(RF) maps.

MLR CART RF

Reconnaissance map 0.014 0.065 0.029
MLR 0.122 0.260
CART 0.220
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reconnaissance map. This improvement is likely due to the use of the
DEM derivatives, as these classes are located in specific topographic
areas. The pedometric maps represent classes Haplic Luvisols Gleyic
(HLg), Rendzic Leptosols (RL) and F best.

Probability sample data provide unbiased estimates of the true areal
fractions of the soil classes, and the uncertainty associated with these
estimates in the form of a confidence interval. These are given in
Table 3. A comparison of the ‘true’ areas with the predicted areas indi-
cates that the pedometric maps and the reconnaissance map strongly
under-estimate the area with RP, hence the small class representation.
The pedometric maps over-estimate the areas with HLg and RL, which
explains the large class representations. The reconnaissance map
over-estimates the areaswith these soils as well, but to a smaller extent
than the pedometric maps.

4. Discussion

4.1. Interest and limitations of the method

The main finding of this study is that the accuracy of the reconnais-
sance soil map could be improvedwithout additional sampling, by only
utilizing the relationship between soil class and covariates as calibrated
on the existing soil map. For most of the soil classes, the pedometric
maps gavemore complex and detailed spatial patterns than the original
Table 6
Cross-tabulation between observed and predicted soil classes at the 123 validation locations fo
(CT) (c), and random forest (RF) (d) maps. Bold figures are the diagonal of the cross-table.

Predicted Observed Total P

Reconnaissance map

LC HLg RP CL RL F Se G S Other

LC 14 0 6 1 2 1 0 0 0 2 26 L
HLg 3 7 3 0 0 0 1 0 0 0 14 H
RP 5 1 5 0 1 0 0 0 0 0 12 R
CL 3 0 3 3 1 0 0 0 0 1 11 C
RL 0 1 4 2 14 1 1 0 0 2 25 R
F 1 0 1 0 0 5 0 0 2 1 10 F
Se 0 0 0 0 0 1 10 1 1 1 14 S
G 0 0 0 0 0 1 0 4 0 0 5 G
S 0 0 0 0 0 0 0 0 6 0 6 S
Other 0 0 0 0 0 0 0 0 0 0 0 O
Total 26 9 22 6 18 9 12 5 9 7 123 T

CT Total

LC HLg RP CL RL F Se G S Other

LC 15 0 5 1 3 0 2 0 0 0 26
HLg 3 8 5 0 0 0 0 0 0 2 18 H
RP 4 0 6 1 0 0 0 0 0 1 12 R
CL 0 0 1 4 0 0 0 0 0 1 6 C
RL 4 1 3 0 15 1 0 0 0 1 25 R
F 0 0 1 0 0 7 0 0 2 1 11 F
Se 0 0 1 0 0 0 9 0 1 1 12
G 0 0 0 0 0 0 1 5 0 0 6
S 0 0 0 0 0 1 0 0 6 0 7 S
Other 0 0 0 0 0 0 0 0 0 0 0 O
Total 26 9 22 6 18 9 12 5 9 7 123 T
map. The reconnaissance soil map generally delineates large polygons
corresponding to the soil class that the surveyors considered to be dom-
inant in the landscape. It seems therefore not surprising that large clus-
ters of grid cells corresponding to plateaus look quite similar in allmaps,
and that more narrow clusters located in complex landscapes occur
more frequently using DSM than by the original map. This indicates an
improvement because these local and fragmented soil classes really
occur but could not be represented in the 1:250,000 reconnaissance
soil map due to map generalization principles. The largest improve-
ments of DSM maps compared to the original soil map were obtained
for map units characterized by specific topographic positions: flat pla-
teau (LC), steep slopes (CL) and alluvial plains (F). Indeed in this case,
the SRTM data proved to be more efficient to delineate these units
than the conventional way that made use of an old topographic map.

The overall purity of the DSM maps ranges from 61.3% to 65.9%.
These purities are comparable and consistent with previous studies
(e.g., Grinand et al., 2008; Häring et al., 2012; Kempen et al., 2009,
2012b; Lemercier et al., 2012) and somewhat smaller than the recom-
mendation by Marsman and de Gruijter (1986), who suggested 70% as
an acceptable overall purity for soil maps.

All DSM methods gave a statistically significant improvement in
map accuracy compared to the reconnaissance soil map. This finding
is very remarkable, because no additional observations were used and
the model was calibrated using a dense grid overlaid on the existing
soil map. A ‘perfect’ regression model would calibrate such that predic-
tion with such model would exactly reproduce the original map (note
that a perfect model would not reproduce reality because we used a
calibration sample obtained from a map and not from reality), which
would mean no improvement. We used imperfect models that do not
reproduce the calibration data exactly (as shown by the internal purity
estimates), and remarkably this yielded maps with larger purities. The
improvement was statistically significant so we can rule out that this
happened by chance. Apparently, the ‘imperfect’ models rightfully re-
place implausible combinations of soil classes and covariates as present
in the existing soil map with more plausible combinations.
r the reconnaissance (a), the multinomial logistic regression (MLR) (b), classification tree

redicted Observed Total

MLR

LC HLg RP CL RL F Se G S Other

C 17 0 4 0 1 0 1 0 0 0 23
Lg 3 7 3 0 0 0 0 0 0 1 14
P 4 0 4 0 0 0 0 0 0 0 8
L 0 1 4 4 0 0 0 0 0 2 11
L 2 1 5 2 17 0 0 1 0 3 31

0 0 1 0 0 8 0 0 0 0 9
e 0 0 0 0 0 0 11 0 0 1 12

0 0 0 0 0 0 0 4 0 0 4
0 0 1 0 0 1 0 0 9 0 11

ther 0 0 0 0 0 0 0 0 0 0 0
otal 26 9 22 6 18 9 12 5 9 7 123

RF Total

LC HLg RP CL RL F Se G S Other

LC 16 0 5 1 2 0 0 0 0 0 26
Lg 3 8 3 0 0 0 1 0 0 1 17
P 3 0 6 0 0 0 0 0 0 0 9
L 1 0 3 3 0 0 0 0 0 0 8
L 3 1 4 2 16 1 1 0 0 4 27

0 0 1 0 0 8 0 0 1 0 23
Se 0 0 0 0 0 0 10 0 1 2 13
G 0 0 0 0 0 0 0 5 0 0 4

0 0 0 0 0 0 0 0 7 0 7
ther 0 0 0 0 0 0 0 0 0 0 0
otal 26 9 22 6 18 9 12 5 9 7 123



Table 7
Map unit purities and class representations of the reconnaissance soil map and multinomial logistic regression (MLR), classification tree (CT) and random forest (RF) prediction maps.

Soil class Class representation (%) Map unit purity (%)

Reconnaissance map MLR CT RF Reconnaissance map MLR CT RF

LC 55.3 66.0 58.9 62.6 53.8 73.8 58.0 61.5
HLg 77.1 77.4 88.4 88.4 50.0 49.4 43.9 46.6
RP 22.5 17.8 27.1 27.1 41.7 49.8 50.2 66.8
CL 49.1 66.8 66.4 66.4 27.3 36.5 66.1 50.2
RL 77.8 94.4 83.5 83.2 56.0 54.9 60.4 55.8
F 53.9 89.2 77.5 100 50.0 89.2 64.3 75.5
Se 83.0 91.3 74.7 74.7 71.4 91.7 74.9 68.9
G 81.1 79.7 100 79.7 80.0 100 84.1 100
S 69.1 100 69.1 79.3 100 82.9 86.3 100
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The results presented in this paper indicate that in situations with
limited budgets for collecting field data for calibration of DSM models,
using a legacy soil map to obtain calibration data can be an efficient
and attractive alternative. Nevertheless, it is worth investigating if sim-
ilar results can be obtained for other (larger) areas in France, areas in
other parts of the world and for different mapping methods in order
to draw more generic conclusions about the merit of using a legacy
soil map for model calibration. Further similar work is on-going for
the entire Haute-Normandy region. Also for this region, the DSM maps
will be validated with independent probability sample data and com-
paredwith the reconnaissancemap. Itwill be interesting to see if similar
results with respect to predictive performance will be obtained. When
successful, then the work in Normandy will serve as an example to ex-
pand the method to other regions in France.

Our resultswere interesting for refining a small scale reconnaissance
survey that used few ground sampling. In this case, soil mapping units
already correspond to well-identified landscape units that should be
easily refined by adding more precise soil covariates. It will perhaps be
less efficient withmore detailed soil surveys in which soil class delinea-
tions are more based on the ground sampling and may therefore have a
more complex landscape position.

Another interesting point is that by using a field sample for valida-
tion we found some soils (i.e., seven of the 123 sampling locations)
that could not be classified in any of the soil classes defined by the orig-
inal soil map. Five of these correspond to outcrops of parentmaterial by
erosion processes.More generally, this observation stresses amajor lim-
itation of the method that is linked to the quality and the completeness
of the calibration data. Indeed, DSM methods can only predict the soil
classes that are present in the calibration dataset, which, in our case,
in turn is limited by the classes distinguished on the reconnaissance
soil map.

Using validation data obtained from the soil map assumes that the
map is the perfect truth, which is obviously not the case, as we showed
in this study. Purities estimated from (the internal and cross-validation
purities) tended to be smaller than the external purities (with the
exception for MLR), i.e. using data sampled from a soil map for calibra-
tion might lead to over-optimistic estimates of the map purity, as also
Table 8
Estimated stratum purities. Note that the strata coincide with the map units of the
reconnaissance soil map. n is the number of locations sampled.

Stratum Area (km2) n Reconnaissance map MLR CT RF

LC 346 26 53.8 73.9 57.7 61.5
HLg 173 14 50.0 50.0 44.4 47.1
RP 153 12 41.7 50.0 50.0 66.7
CL 139 11 27.3 36.4 66.7 50.0
RL 325 25 56.0 54.8 60.0 55.6
F 122 10 50.0 88.9 63.6 75.0
Se 174 14 71.4 91.7 75.0 69.2
G 67 5 80.0 100 83.3 100
S 82 6 100 81.8 85.7 100
illustrated by Nauman and Thompson (2014). This illustrates the im-
portance of independent validation with field data.

4.2. Comparison with similar approaches

Debella-Gilo and Etzelmüller (2009) used a similar calibrationmeth-
od tomodel the relationship between thirteenWRB soil groups and ter-
rain attributes and predict the spatial distribution of the soil groups
using digital terrain analysis with multinomial logistic regression in a
Norwegian county. Grinand et al. (2008) sampled a soil map and split
the original dataset in two parts, one for calibration and one for valida-
tion. Lagacherie et al. (1995) proposed a quantified formulation ofmap-
ping rules derived from an existing soil map and used these within an
automated soil survey procedure. The soil pattern rules of a reference
area were formulated through rules which gave probabilities of soil
unit presence. However, these studies did not use independent field
data to evaluate their results. Another difference between these studies
and thework presented here is that these studies used existingmaps to
extrapolate to other areas, whereas we resampled an existing map.

Disaggregation of legacy soil class maps is gaining increased interest
recently (Häring et al., 2012; Subburayalu et al., 2014; Odgers et al.,
2014; Nauman and Thompson, 2014). All these authors used tree-
based methods. Of these, Odgers et al. (2014) and Subburayalu et al.
(2014) usedmore advancedmethods that included probabilistic resam-
pling (Odgers et al., 2014) and a possibilistic approach (Subburayalu
et al., 2014). Here we showed that also with more straightforward
methods similar results in terms of map accuracy can be obtained. The
aim of disaggregating (or refining) legacy maps is to increase detail
and, herewith, hopefully map accuracy. So far, only Nauman and
Thompson (2014) compared the accuracy of the disaggregated map
with that of the legacy map. These authors found a small increase of ac-
curacy compared to legacy map. Here we also find an improvement
compared to the legacy map, and showed that, on the basis of indepen-
dent validationwith probability sample data, the improvementwas sta-
tistically significant.

4.3. Comparison of pedometric models

The three pedometric models gave similar results in terms of map
purity. MLR performed somewhat better than CT and RF, although puri-
ty differenceswere not statistically significant.We found this somewhat
surprising since we expected that the tree-basedmodels would outper-
form MLR given their greater flexibility. Tree-based methods are capa-
ble to model non-linear relationships, can handle observations with
missing covariate data and situations with a large number of covariates
and small number of observations, and, in the case of a categorical target
variable, they do not suffer from the zero-cell problem asMLR does. Be-
cause of their flexibility, tree-based methods are becoming increasingly
popular for digital soil mapping (e.g. Wiesmeier et al., 2011; Häring
et al., 2012; Heung et al., 2014; Nauman and Thompson, 2014;
Subburayalu et al., 2014; Odgers et al., 2014). However, studies that
compare the prediction performance of linear models and tree-based
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models are still very limited. To our best knowledge, this paper is the
first that compares the prediction performance of a linear model with
tree basedmodel for mapping soil classes. Herewe showed that a linear
model as well as a tree-based model can perform.

4.4. Effects of calibration sampling

The calibration data used in this studywas a dense regular grid sam-
ple from the entire study area.Wemight expect a further improvement
in purity if the calibration samplingwas limited to areaswhere we have
more confidence in the reconnaissance map. For example, we expect
that mapping errors are larger close to map unit boundaries. We tested
this hypothesis by applying a 250 m buffer (1 mm on the paper map)
around the map unit boundaries. Sampling locations that fell into the
buffer zone were excluded from the calibration sample. The models
were calibrated with the new dataset (n = 3359) and used to predict
the soil class. Predictions were validated with the independent proba-
bility sample data. Overall purities (60.2% for MLR, 60.4% for CT, 60.3%
for RF) were larger than the overall purity of the reconnaissance map
but smaller than the purities obtained with the full dataset. Interesting-
ly, the external map purities were larger than the internal and cross-
validation purities. These results indicate that the effect of sampling
density and the selection of sampling locations on prediction accuracy
is not trivial, see for example Odgers et al. (2014) and Nauman and
Thompson (2014), and merits further attention.

5. Conclusions

In this studywe refined a reconnaissance soil map at scale 1:250,000
by calibratingmodelswith data from the samemap by sampling the soil
map at a large number of locations. The validation of the new and old
maps with independent probability sample data showed that the accu-
racy of the reconnaissance soil map could be improved without addi-
tional sampling by only utilizing the relationship between soil type
and covariates as calibrated on the existing soilmap. It could be interest-
ing to test thismethod in other parts of theworldwhere only reconnais-
sance soil maps are available (e.g., large parts of Africa and South-
America). For France, we plan to extend this method to the whole
Haute-Normandie region.
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