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Summary

Geostatistical estimates of a soil property by kriging are equivalent to the best linear unbiased predictions

(BLUPs). Universal kriging is BLUP with a fixed-effect model that is some linear function of spatial co-

ordinates, or more generally a linear function of some other secondary predictor variable when it is called

kriging with external drift. A problem in universal kriging is to find a spatial variance model for the

random variation, since empirical variograms estimated from the data by method-of-moments will be

affected by both the random variation and that variation represented by the fixed effects.

The geostatistical model of spatial variation is a special case of the linear mixed model where our data

are modelled as the additive combination of fixed effects (e.g. the unknown mean, coefficients of a trend

model), random effects (the spatially dependent random variation in the geostatistical context) and

independent random error (nugget variation in geostatistics). Statisticians use residual maximum like-

lihood (REML) to estimate variance parameters, i.e. to obtain the variogram in a geostatistical context.

REML estimates are consistent (they converge in probability to the parameters that are estimated) with

less bias than both maximum likelihood estimates and method-of-moment estimates obtained from

residuals of a fitted trend. If the estimate of the random effects variance model is inserted into the

BLUP we have the empirical BLUP or E-BLUP. Despite representing the state of the art for prediction

from a linear mixed model in statistics, the REML–E-BLUP has not been widely used in soil science, and

in most studies reported in the soils literature the variogram is estimated with methods that are seriously

biased if the fixed-effect structure is more complex than just an unknown constant mean (ordinary

kriging). In this paper we describe the REML–E-BLUP and illustrate the method with some data on soil

water content that exhibit a pronounced spatial trend.

Introduction

Soil scientists must often base their advice to land managers on

predictions of the values of soil properties, at points or over

blocks of land, that are predicted from a few observations.

Geostatistical methods give predictions of minimum and

known variance. Our predictions are therefore in some sense

optimal, and we can quantify their attendant uncertainty. The

basis of geostatistical estimation is the assumption that a

datum on a variable z at location s is a realization of a random

field Z(s). The random function is assumed to be intrinsically

stationary, that is to say

E½ZðsÞ � Zðsþ hÞ� ¼ 0; 8s 2 <2; ð1Þ

and

E½fZðsÞ � Zðsþ hÞg2� ¼ 2�ðhÞ; 8s 2 <2; ð2Þ

where h is a lag vector, the separation between two locations in

two-dimensional real space (<2), and �(h) is the variogram, a

function of the lag only.

It is often reasonable to assume that soil variation is a

realization of a random process, but there may be components

of variation that cannot be treated in this way. For example,

soil properties influenced by topography may show a pro-

nounced trend across a study region, and this is not consistent

with the first part of the intrinsic hypothesis in Equation (1).

In such circumstances the experimental variogram estimated

from the data may appear to be unbounded.

A trend may be represented by some polynomial function of

co-ordinates, and it may often be possible to treat soil varia-

tion as composed of such a trend with superimposed random
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variation. We can sometimes generalize this model to treat soil

variation as a function of any smoothly varying quantity that

is known at all sites (an external drift variable), and super-

imposed random variation. This is advantageous when the

external drift variable is relatively cheap to measure, such as

a topographic index derived from a digital elevation model, or

a remotely sensed measurement of the land surface.

The problem for the soil scientist is first, to estimate the

parameters of the two components of this model of soil varia-

tion in an unbiased way and, second, to combine the two

components into a prediction of the soil variable at an

unsampled site. The state of the art for this problem in fre-

quentist statistics is the empirical best linear unbiased predic-

tor (E-BLUP) based on residual maximum likelihood (REML)

estimation of the spatial variance model (Patterson &

Thompson, 1971). The best linear unbiased predictor (BLUP)

of some variable is computed from a linear mixed model – i.e.

a model that contains fixed and random effects. If the random

effect is assumed to be an intrinsically stationary random field

then the BLUP is equivalent to kriging (Stein, 1999), and if

normality can be assumed then the BLUP is the conditional

expectation of the variable at the prediction site (conditional

on our data).

More specifically, if the fixed effect is just an unknown mean

then the BLUP is equivalent to ordinary kriging; if the fixed

effect is some linear combination of predictors (such as spatial

coordinates) then the BLUP is equivalent to universal kriging

(UK). The problem for implementation of a BLUP is that it

requires a variance model. A common solution in the ordinary

kriging case is to estimate the variogram empirically for dif-

ferent lag intervals with a method-of-moments estimator such

as that of Matheron (1962), then to fit a variogram function

(e.g. Webster & Oliver, 2001). It is widely recognized that the

main practical obstacle to the implementation of UK is how to

obtain a variogram for the random variation (Cressie, 1993;

Goovaerts, 1997) since the method-of-moments estimator will

be influenced by both the spatial trend and the variation that

we treat as random. The E-BLUP solution is to estimate the

parameters of the variogram model by residual maximum like-

lihood (REML), and to use these to derive the (co)variances

which are ‘plugged in’ to obtain the E-BLUP.

Our reason for writing this paper is to illustrate the REML–

E-BLUP for spatial prediction of soil properties in the pre-

sence of a trend (or by incorporation of some other external

drift variable). The soil science literature contains various

examples of the E-BLUP, usually under the title universal

kriging or regression kriging. However, the problem of how

to acquire the variance model is commonly addressed either on

the basis of ad hoc assumptions that lack generality, or by

methods that are generally biased. This matters, because this

bias will invalidate the estimation variances that we compute

for the predictions. A principal advantage of geostatistics is

that the uncertainty attendant on a prediction is known.

Further, the variance model may be used to guide further

sampling or a new sampling exercise in a cognate landscape,

and if the variance is biased then the sampling scheme may not

match our requirements. Given this, the virtues of the unified

REML–E-BLUP framework do not appear to have received

the attention that they merit from soil scientists. In the follow-

ing section, we first review how the E-BLUP is currently used

in the soil science community, and we then present and illus-

trate the REML–E-BLUP scheme.

Theory

E-BLUP in soil science, and the problem of estimating

variance parameters

Universal kriging (UK) was proposed by Matheron (1969).

In UK we consider the following model for Z(s):

ZðsÞ ¼
XK
k¼0

�k fkðsÞ þ �ðsÞ; ð3Þ

where the fk(s), k ¼ 0, 1, . . ., K is a specified set of functions of

the co-ordinate vectors (such as polynomials) and the �k are

coefficients which must be estimated. The term �(s) is a ran-

dom field with zero mean and with a variogram ��(h). The UK

estimate at some target site sp, based on N observations at

neighbouring sites, is

bZðspÞ ¼ XN
i¼1

�izðsiÞ; ð4Þ

where the �i are kriging weights. These weights are optimized

to minimize the kriging variance, subject to the unbiasedness

constraints for k ¼ 0, . . ., K:

XN
i¼1

�i fkðsiÞ ¼ fkðspÞ: ð5Þ

Webster & Oliver (2001) provide more detail. The UK esti-

mate is the best linear unbiased predictor (BLUP) of Z(sp)

based on the trend model fk(s), k ¼ 0, 1, . . ., K (Stein, 1999).

However, in order to obtain the E-BLUP we must know ��(h).

This variogram cannot be estimated directly from data with

the method-of-moments estimators commonly used for ordin-

ary kriging (e.g. Matheron, 1962) since the random variation is

only one component of the variable that we observe (Cressie,

1993). In practice, ��(h) is sometimes estimated on the assump-

tion that at short lags the effect of the trend is negligible and

that at longer lags we can restrict the pair comparisons used to

estimate the variogram – z(si), z(si þ h) – to those for which

XK
k¼0

XN
i¼1

�i�k fkðsiÞ �
XK
k¼0

XN
i¼1

�i�k fkðsi þ hÞ: ð6Þ

So, for example, if inspection of the data suggested the pre-

sence of a linear trend in a particular direction, then we might

estimate the variogram only from pair comparisons that are
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approximately perpendicular to the trend. This, of course,

entails the assumption that ��(h) is isotropic. This approach

is advocated in a geostatistics text widely used by soil scientists

(Goovaerts, 1997). An example of its application to soil data is

presented by Meul & Van Meirvenne (2003).

The second approach to prediction in the presence of a trend

has been adopted because it is difficult to obtain an estimate of

the variogram ��(h) for UK. Again, we use some specified

function of spatial co-ordinates to model the deterministic

trend. However, the coefficients, �k, are estimated by ordinary

least squares (OLS), and the estimated coefficients, b�k, are

then used to compute residuals at each site where the target

variable has been observed:

b�ðsiÞ ¼ zðsiÞ �
XK
k¼0

b�k fkðsiÞ: ð7Þ

The variogramof these residuals is then estimated by amethod-of-

moments estimator such as that of Matheron (1962), and mod-

elled with a continuous function of lag distance. At any target site,

sp, wemay then obtain an estimate of the deterministic component

of the target variable, �K
k¼0

b�k fkðspÞ, then add to this an estimate

of the random component that we obtain by kriging from the

residuals, b�ðsiÞ. If we generalize this method so that the argument

of the deterministic function may be some external drift variable,

then we have one form of regression kriging, as used by Odeh

et al. (1995). Regression kriging has been widely used in soil

science – for example, by Terra et al. (2004) and Braimoh et al.

(2005). Note that universal kriging and regression kriging are

equivalent formally. In practice, universal kriging entails simulta-

neous estimation of the trend and spatially dependent random

components of Z(h), while in regression kriging the trend model

is estimated as an initial step. This will lead to different predic-

tions if the universal kriging is conducted in a local neighbour-

hood rather than on all the data.

The problem with this approach is that the variogram esti-

mated from the residuals is a biased estimate of the variogram of

the random component of spatial variation (Cressie, 1993). In

short, this is because the point estimates of this variogram depend

in a non-linear way on the estimates of the nuisance parameters,b�k, and so they are biased even though the b�k are not.

This problem is illustrated in Figure 1. We simulated 5000

realizations of a standard normal random field at 100 points

located on a regular linear transect of unit interval. This was

done by Cholesky factorization of the covariance matrix

(Cressie, 1993), the matrix having been computed for a linear

variogram with a sill at a range of 40 units, and with

zero nugget. Figure 1(a) shows the mean values of point

estimates of this variogram at several lags, obtained from the

realizations. The 95% confidence interval for each mean is also

shown, and the continuous line is the specified variogram. The

mean of the estimates of the variogram for any lag is close to

the theoretical value, which always lies within the confidence

interval. We then repeated the simulation, but added a simple

linear trend to the simulated values so that the random vari-

able at the ith position on the transect is

zðiÞ ¼ �0 þ �1iþ �ðiÞ; ð8Þ

where �(i) is the random variable with a bounded linear var-

iogram, and in this case �0 ¼ 0 and �1 ¼ 5. Once one realiza-

tion of this process had been generated, the parameters of the

linear trend, �0 and �1, were estimated by ordinary least

squares. The estimates, b�0 and b�1, were then used to compute

the residuals, zðiÞ � b�0 � b�1i, and the variogram was estimated

from these. This was repeated for each realization. The results

are shown in Figure 1(b). The bias at long lags is very appar-

ent; note that by contrast the 95% confidence interval for the

mean of each of the estimates b�0 and b�1 included the specified

value.

This bias will have two consequences. First, the overall

variability of the random variable is underestimated. Second,

because the bias increases with lag (in fact the bias is quadratic

with lag; Cressie, 1993) the experimental variogram, and mod-

els fitted to it, will not represent the spatial dependence of the

random variation correctly.

A solution sometimes advanced for this problem (e.g. by

Hengl et al., 2004) is to use the variogram from the OLS

residual to re-estimate the parameters b�0 and b�1 by generalized

least squares (GLS). The variogram from the residuals of this

model is then used in a further GLS estimation, and this is

iterated until the estimates of b�0 and b�1 no longer change.

However, the point estimates of the variogram still depend

on nuisance parameters, so this method does not remove the

bias, although it may reduce it (Gambolati & Galeati, 1987).

Kitanidis (1993) showed that the variogram can be used to

estimate the generalized covariance function of data; i.e.

the covariance function plus some arbitrary function of lag.

In the case of a linear trend, the arbitrary function is a quad-

ratic and Kitanidis showed that it does not affect the universal

kriging predictions, or the prediction error variances, because

of the unbiasedness constraints in the universal kriging

equations with a linear trend model. However, this finding is

of practical use only if the function fitted to point estimates of

the variogram incorporates this arbitrary function, which

requires that we correctly identify the variogram model and

the order of the trend model. This will be difficult in practice,

and would add to the uncertainty in the final variance model.

For this reason, it is not surprising that Kitanidis (1993) con-

cluded that ‘a more objective and promising approach [than

modelling experimental variograms of residuals]’ is to use

residual maximum likelihood, and it is to this that we now

turn.

The REML–E-BLUP solution for prediction in the presence

of a trend

Stein (1999) has argued for the use of residual maximum like-

lihood (REML) estimation in combination with the E-BLUP

REML–E-BLUP solution for estimation with a trend 789
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as a general scheme for spatial interpolation, and this is the

approach that we present below. The model of spatial varia-

tion of data that we use in geostatistics is a special case of the

linear mixed model. The linear mixed model comprises an

additive combination of one or more fixed effects (such as a

trend model), one or more random effects (which will be the

spatially dependent random variables in a geostatistical con-

text) and an independent random variable. If we are to esti-

mate variance parameters for the random effects (a variogram

model in geostatistics), then REML has the advantages of the

likelihood framework (it is asymptotically efficient and consis-

tent) along with an adjustment that reduces the bias found in

maximum likelihood estimates of variance parameters. This is

discussed by Cressie (1993).

The REML method is due to Patterson & Thompson (1971).

Kitanidis (1987) used REML to estimate parameters of a

spatial variance model, and Zimmerman & Zimmerman

(1991) discussed REML estimation of variogram parameters

and their use for ordinary kriging. More recently Gilmour

et al. (2004) and Welham et al. (2004) have discussed the

E-BLUP of linear mixed models, including the particular

case of universal kriging. It is this state of the art that we

describe below.

There are three elements in the computation of the E-BLUP of

a variable, z, at an unsampled site, sp (although the average

information algorithm of Gilmour et al. (1995) allows these to

be computed in a single step). The first is the estimation of

a variance structure (e.g. a variogram) for some specified linear

mixed model. This is then used to obtain estimates of the

model coefficients that we need to form the E-BLUP. The esti-

mated variance model is then used to compute the E-BLUP, ~zp.

These latter two steps are equivalent to the solution of the

universal kriging equations and application of the resulting

kriging weights, with the variance model estimated in the first

step.

Estimation of the variance models. In a previous paper (Lark

& Cullis, 2004), we described how REML allows the inference,

from n observations, of the variance parameters of a linear

mixed model. We may write the model as
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Figure 1 Mean (solid symbol) and 95% confidence inter-

val (bars) for point estimates of (a) the experimental var-

iogram of 5000 realizations of a random variable with a

bounded linear variogram; the solid line is the specified

variogram; (b) the corresponding results for the variogram

of a variable with a linear trend superimposed on the same

random process, the trend being estimated by ordinary

least squares and subtracted before variogram estimation.

The broken line on (b) shows the variogram with para-

meters equal to the mean of all REML estimates over the

5000 realizations.
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z ¼ Xt þ Zuþ e; ð9Þ

where the vector z contains our n observations, X is an n � p

design matrix that associates each of the n observations with a

value of each of the p fixed effects (such as terms of a poly-

nomial trend model), and the vector t contains the p fixed-effect

coefficients. The vector u contains q random effects, realizations

of a variable u, that are associated with the n observations by

the n � q design matrix Z. Typically, with only one observation

at each location, q ¼ n and Z is the identity matrix. Here we

assume that u is the spatially dependent random variable and

the term e is a vector of independent random errors. These

terms are independent of each other, thus

u

e

� �
� N 0

0

� �
;

�2�G 0

0 �2I

� �� �
; ð10Þ

where �2 is the variance of the independent error, � is the ratio

of the variance of u to �2 and G is the correlation matrix of u.

Note that we are making an explicit assumption that the ran-

dom terms are jointly Gaussian. The term e represents both

independent measurement errors and variation that arises from

processes that are spatially dependent over shorter distances

than separate our samples; this is the nugget in geostatistical

terms. If we assume that u is drawn from a second-order sta-

tionary random process then the correlation matrix G will

depend only on the relative locations of our observations

given some specified correlation function C(�) with one or

more parameters that characterize the spatial dependence:

Gi;j ¼ Corr ½uðsiÞ; uðsjÞ� ¼ Cðsi � sjÞ: ð11Þ

The correlation function may be the spherical or exponential

function, familiar in geostatistics, although others may be

used. For example, Stein (1999) argues for the Matérn func-

tion, which is particularly useful when variation is locally

smooth. If we use the exponential function then there is a

single distance parameter, a, that must be estimated and

Cðsi � sjÞ ¼ exp
�jsi � sjj

a

� �
: ð12Þ

If we use the spherical correlation function then the distance

parameter is the range, a, and

Cðsi � sjÞ ¼ 1� 3jsi � sjj
2a

þ 1

2

jsi � sjj
a

� �3

if jsi � sjj < a

¼ 0 otherwise:

ð13Þ

Note that both these functions, as expressed, describe isotropic

variation; the variogram depends only on the distance between si

and sj. The correlation function could be more complex with para-

meters that describe spatial anisotropy. The parameters of this

function, which we represent by the vector q, along with �2 and �,

are estimatedbyREML.This removesdependenceof the estimates

on the fixed effects t which are nuisance parameters in this problem

andwhichwould increase the bias of estimates based onmaximum

likelihood or method-of-moments (Smyth & Verbyla, 1996).

The residual log-likelihood function, Equation (14) below,

has the unknown terms �2, � and q as its arguments, condi-

tional on the data z. The residual log-likelihood is

‘R(�
2; �; qjz) ¼� 1

2
log jHj þ log jXTHXj þ ðn� pÞ�2þ

�
1

�2
zTðI�WC�1WTÞz

�
;

ð14Þ

where W ¼ [X, Z] and H ¼ �ZGZT þ I. The estimates of �2, �

and q that maximize ‘R(�
2, �, qjz) are found numerically. The

average information (AI) algorithm (Gilmour et al., 1995) can

do this efficiently. However, the spherical correlation function is

not smooth (Mardia & Watkins, 1989) and this causes problems

for the AI algorithm which uses gradient methods. Lark &

Cullis (2004) used simulated annealing to find REML estimates

in these circumstances, and that is what we have done here.

We revisited the simulation shown in Figure 1 and used

REML to estimate the variogram of the random variation

in the presence of the same trend. The dotted line in Figure

1(b) shows the variogram with the average value of the

estimated parameters over all 5000 realizations. The 95%

confidence interval for the mean range is 39.999–40.006

(specified value was 40), and for the sill variance

0.975–0.985 (specified value 1.0). The nugget variance was

estimated as zero in all cases (the specified value). The

range therefore appears to be estimated without bias,

although there is a very small bias in the variance, but

this is negligible by comparison with the bias in the experi-

mental variogram of the OLS residuals.

Estimation of the fixed and random effects. Once we have

obtained estimates of the variance parameters by REML, we

can estimate the fixed and random effects by solution of the

mixed model equation:

C
bt
~u

� �
¼ XTz

ZTz

� �
; ð15Þ

where

C ¼ XTX XTZ

ZTX ZTZþ ��1G�1

� �
:

The solution of this equation returns us estimates of the

fixed effects, bt, and predictions of the random effect, ũ. We

follow the convention of denoting an estimate of a fixed effect

by ab, and a predictor of some random quantity (or a function

of such a predictor such as the E-BLUP of z(s)) by a~. The

covariance matrix for the error of the estimates is

Cov
bt � t
~u� u

� �
¼ �2C�1 ¼ �2 C1;1 C1;2

C2;1 C2;2

� �
: ð16Þ

Computation of the E-BLUP estimates. The next step is to

form predictions at an unsampled site. Welham et al. (2004)

and Gilmour et al. (2004) have recently shown how mixed
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models should be used for prediction. We want a prediction at

a new point sp, where the fixed effects are in the p � 1 vector

xp. The value that we predict is fp ¼ xTp t þ up. This prediction

is marginal on the error in our observations (e). That is to say,

we assume that the term e is due to measurement error, and so

any estimate at some sp that is one of our observation sites is

not necessarily equal to our observed value at the site which is

zp ¼ fp þ "p. This is by contrast to the usual ordinary kriging

estimates which are conditional on e. At any site, sp, that is not

one of our observation sites, the estimates marginal or condi-

tional on e are the same since the E-BLUP of "p is zero. For

practical purposes the fact that our E-BLUP is marginal on e
is only of importance for our computation of the prediction

variance, and we discuss this in more detail below.

The predicted value is:

~fp ¼ xTpbt þ ~up

¼ xTpbt þ gTo;pG
�1~u; ð17Þ

where Cov[u, up] ¼ ��2go,p. The vector go,p is therefore com-

puted from our REML estimates of the variance parameters.

When we examine the expression for the E-BLUP in

Equation (17), it is clear that the first term represents the

prediction based on the polynomial trend model or external

drift variables, that are included in the design matrix X. The

second term is the kriging estimate of the spatially dependent

random effect.

Computation of the E-BLUP estimation variance. The

estimation variance of the E-BLUP is

Var ½ ~fp � fp� ¼ Var xTp ðbt � tÞ þ gTo;pG
�1~u� up

h i
: ð18Þ

It can be shown (see Appendix) that Equation (18) gives rise

to the following formula for the estimation variance of the

E-BLUP. The first term accounts for the uncertainty due to

estimation error of the fixed and random effects, the second

term is uncertainty of the interpolated random effect, that is a

kriging variance.

Var ½ ~fp � fp� ¼�2 xp; g
T
o;pG

�1
h iT

C�1 xp; g
T
o;pG

�1
h i

þ

��2 gp;p � gTo;pG
�1go;p

	 

: ð19Þ

This estimation variance is appropriate when all the inde-

pendent error, e, can be attributed to measurement error. If

this is the case, then Equation (19) is the mean square error of

the E-BLUP as a predictor of the true value of the variable at

sp. In practice this assumption is questionable for many soil

properties. While measurement error is a component of the

nugget variance, much is attributable to actual sources of

variation in the soil that are only spatially dependent over

short distances, and so do not appear correlated in our data.

This variance should be accounted for when we quantify the

uncertainty of the BLUP at sp. This can be handled in the

context of the linear mixed model if we undertake duplicate

measurements of the variable on material from the same site.

These duplicate observations can be used to estimate the

measurement error as a separate random component, not

confounded with short-range spatial variation. In these cir-

cumstances, the design matrix for the random effect is not an

identity matrix. When such information is not available then

we cannot obtain an exact prediction variance since the com-

ponent of e that is attributable to measurement error is

unknown. We can identify an upper bound on the prediction

variance, by assuming that the measurement error is zero and

so that all the nugget variance is due to actual variation of the

soil. This is what is done in most geostatistical surveys by soil

scientists, although it is rarely made explicit. In this case the

prediction variance is

Var ½ ~fp � zp� ¼�2 xp; g
T
o;pG

�1
h iT

C�1 xp; g
T
o;pG

�1
h i

þ
�

� gp;p � gTo;pG
�1go;p

	 

þ 1

o
; ð20Þ

since, as in Equation (10), the two random terms in the model

are independent.

Case study

The case study uses data on the gravimetric water content of the

topsoil (0–200 mm) on Cashmore field at Silsoe in England

(latitude 52�0.440N, longitude 0�25.130W). These data were col-

lected on a 50-m square grid supplemented with additional

sample sites to give a total of 100 observations. The data were

collected in the spring of 1995 when the soil was at field capa-

city. The data are presented as a post-plot in Figure 2. This

shows distinct (increasing) trends in water content from north

to south and east to west. This trend is explicable from what we

know about the soils of this field. A previous soil survey of the

field (Lark et al., 1998) showed that the north of the field

overlies the Lower Greensand (Cretaceous sands). The Gault

Clay (also Cretaceous) is downfaulted against the Lower

Greensand with the boundary running approximately west–

northwest to east–southeast in the southern half of the field.

These solid formations are overlaid by superficial material. In

the north of the field, the eastern area is dominated by coarse

colluvium, while relatively heavy-textured drift is found to the

west. The southwest of the field has fine loamy drift over the

Gault, while the southeast includes Evesham series soil formed

in swelling clay to the surface, and loamy textured alluvium. As

a result of this, the driest soils are in the northeast of the field

and the wettest in the southwest.

Table 1 presents summary statistics for these data, and a

histogram is shown in Figure 3. Note that the data are some-

what skew, but the post-plot suggests that this may be largely

attributable to the trend. The experimental variogram of the

data is shown in Figure 4. Since there were only 100 data, we

limited ourselves to the consideration of isotropic variograms.
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The unbounded form of the variogram also indicates the

presence of a spatial trend.

We used the method of simulated annealing to find the REML

estimates of variance parameters for four different models. We

used this method because two of the models had a spherical

correlation function for the random effect which is best estimated

in this way (Lark & Cullis, 2004). First we fitted a simple linear

trend model,

z ¼ �0 þ �1xþ �2yþ uþ "; ð21Þ

where x and y are eastings and northings and the coefficients of

the polynomial trend, �0, �1 and �2, are the fixed effects. The

term " is an independent random variable of variance �2, and u is

a random variable of variance ��2. The random effect, u, has a

correlation function with a parameter a – the range of a spherical

correlation function, Equation (13), or the distance parameter of

an exponential correlation function, Equation (12). The

variance parameters �2, � and a were estimated by REML. The

fixed effects (�0, �1 and �2) and random effects were then

estimated with Equation (15). We fitted two models for a linear

trend, one with a spherical and one with an exponential correla-

tion function for the random effect. We then fitted quadratic

trend models,

z ¼ �0 þ �1xþ �2yþ �3x
2 þ �4y

2 þ �5xyþ uþ "; ð22Þ

again specifying exponential and spherical correlation functions,

and the same variance parameters as for Equation (21). The

estimated variance parameters and fixed effects are shown in

Table 2.

The likelihoods indicate that the exponential spatial variance

model is preferred for the linear trend and the spherical variance

model for the quadratic trend, although the difference is not

large. Note that we can only compare two models on their

residual likelihoods when their fixed-effect structure is the

same. Thus we may use the residual likelihood to select the

spherical or exponential variance model for a linear trend, but

not to choose between a linear and a quadratic trend model. It is

notable that the variance for the best-fitting linear trend model is

large, and in fact the distance parameter is also large (247 m),

indicating spatial dependence at distances up to 750 m, substan-

tially larger than the dimensions of the area under study. The

distance parameter for the spherical variance model is much

smaller. In Figure 5, we show the residuals from the linear

(Figure 5a) and quadratic (Figure 5b) trend models. There is a

clear systematic structure to the former with the large negative
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Figure 2 Post-plot of gravimetric water content

at observation sites on Cashmore field. Co-ordi-

nates are in metres relative to a local origin at

UK Ordnance Survey 508000, 235000.
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Table 1 Summary statistics for the data on gravimetric water content

(%)

Mean 22.3

Median 21.3

Standard deviation 3.5

Skew 1.2
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values near the northern and southern boundaries of the field.

This suggests that higher-order terms are required in the trend

model. This is supported by the Wald statistics calculated to test

the null hypotheses that each of the quadratic terms in Equation

(22), �3, �4 and �5, are zero. The Wald statistics were tested

against the F-distribution and the denominator degrees of free-

dom were adjusted for small sample size after Kenward & Roger

(1997). The Wald statistics were 0.32, 26.8 and 5.5 for �3, �4 and

�5, respectively. The null hypothesis may therefore be accepted

for �3 but rejected for �4 and �5 (P ¼ 1.6 � 10�5 and

P ¼ 0.002, respectively). Figure 6 shows the experimental vario-

grams (symbols) for the residuals from both trend models that

we computed for exploratory purposes; they are of course

biased. Since we are restricted to lags up to 150 m, in line with

usual practice to minimize edge effects, the effect of the structure

in the residuals from the linear trend model is not apparent.

Table 2 Results for fitting different trend models to soil water content on Cashmore field

Trend model: Lineara Lineara Quadraticb Quadraticb

Variogram model: Exponential Spherical Exponential Spherical

Variance model

�2 0.54 0.52 0.48 0.59

Parameter a/mc 247.2 75.5 18.8 35.3

� 24.0 5.67 3.0 1.94

Fixed effects

Estimates

�0 71.9 67.6 226.4 223.6

�1 �0.022 �0.021 �10.95 �10.79

�2 �0.064 �0.060 �57.1 �56.3

�3 – – 0.211 0.183

�4 – – 4.211 4.114

�5 – – 1.186 1.228

Standard errors

�0 11.9 4.8 35.3 30.9

�1 0.013 0.005 5.52 4.64

�2 0.016 0.007 10.12 8.93

�3 – – 0.383 0.318

�4 – – 0.891 0.784

�5 – – 0.583 0.520

Log-likelihood �85.62 �86.96 �70.37 �70.04

aAs in Equation (21).
bAs in Equation (22).
cDistance parameter of the exponential correlation function and range of the spherical correlation function.
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Figure 4 Experimental variogram of observed

soil water contents.
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Figure 6 also shows the REML estimates of the variograms

of the random variation. The parameters of these are in Table

2. On each graph the solid line represents the variogram with

the larger likelihood, and the broken line is the alternative with

smaller likelihood. Note that the selected (spherical) and the

alternative variogram for the random variation about the quad-

ratic trend are very similar. The selected and alternative vario-

gram for the linear trend model are very similar at lags up to

60 m, which will dominate the covariance matrix of these data,

but diverge at longer lags. This probably reflects artefacts due to

the poor fit of the linear trend (notably the large residuals from

the trend near the northern and southern field margins).

We therefore selected the quadratic trend model, and the

version estimated with a spherical variance model given that

the log-likelihood was larger than for the exponential model.

Table 3 shows the summary statistics of the residuals from the

selected trend model and Figure 7 their histogram. The residuals

are symmetrically distributed, supporting the assumption of a

Gaussian random process superimposed on a trend; the trend

was responsible for the skew in the raw data.

We then computed the E-BLUPs of soil water content at

points on a regular grid across the field, using Equation (17)

with the estimated fixed and random effects for the selected

model. We estimated the variance of the estimates using

Equation (20) to map the uncertainty of the predictions.

These are the variances of the estimates conditional on the

uncorrelated random variation in the data, e. They are thus an

upper bound on the error variance of the E-BLUP as a pre-

diction of the true values, equivalent to the assumption that

there is no measurement error so all the nugget variance is due

to real soil variation.

These results are shown in Figure 8. This shows both the

smooth trend from the driest soils in the northeast corner to

the wettest in the southwest, described by the fixed effects of

the model, but also short-range variation arising from the

kriging estimate of the error at each target site. The estimation

variance is smallest near the observation sites (an effect of the

kriging component of the estimation).

Discussion

In this paper we have strongly advocated the REML–E-BLUP

method. It is worth reflecting on its possible limitations.
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Figure 5 Post-plot of residuals from (a) linear

trend model and (b) quadratic trend model.
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First, unlike regression kriging, REML estimation entails an

explicit assumption that u and e have a joint Gaussian distribu-

tion. Many soil variables cannot be plausibly regarded as nor-

mally distributed on the scales on which they are most naturally

or conveniently measured. It is therefore necessary, as we have

done here, to study the descriptive statistics, histograms and post-

plots of residuals from the trend models, and where necessary

consider appropriate transforms. We can only evaluate the plau-

sibility that the marginal distribution of the data is Gaussian in

this way, and the assumption of a joint Gaussian distribution is

not necessarily made safe. As noted by Pardo-Igúzquiza (1998a)

we only have one realization of the full joint distribution of a

variable, so the assumption is, in principle, unverifiable. He went

on to argue that the assumption of a joint Gaussian distribution

may be justified because it is the distribution of maximum

entropy given the mean and covariance matrix. This rationale

is in concordance with other recent developments in geostatistics

(Christakos, 2000). Furthermore, Kitanidis (1985) showed, using

simulated data, that likelihood methods to estimate spatial var-

iance models are robust to departures from a normal distribution

and actually performed better with non-normal data than did

method-of-moments estimation of the experimental variogram.

We accept that the assumption of a joint Gaussian distribution

remains a problem for REML. Alternatives might be based on

hierarchical generalized linear models (Lee & Nelder, 1996) or

penalized quasi-likelihood (Breslow & Clayton, 1993) but these

methods require fuller evaluation in a spatial context. Bayesian

methods (Diggle et al., 2003) may also offer greater robustness,

but have their own limitations, notably the dependence on

assumptions entailed in the prior distributions.
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Figure 6 Experimental variogram (solid symbols) of residuals

from (a) linear trend model and (b) quadratic trend model.

The lines are the REML estimates (with parameters in Table

2). The solid line corresponds to the selected variogram, and

the dotted line to the alternative for each trend model.
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Table 3 Summary statistics for the residuals from the trend model for

gravimetric water content (%)

Mean 0.13

Median 0.14

Standard deviation 1.21

Skew 0.08
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Second, as noted above and described by Mardia &

Watkins (1989), the likelihood function for a spherical vario-

gram can be multimodal, because it is not differentiable at the

range. This requires that we use methods to find the max-

imum likelihood that are less efficient than the AI algorithm.

Stein (1999) argues for the more general use of Matérn cor-

relation functions, or exponential functions which are both

asymptotic, and doubts the general applicability of functions

that cut off sharply at the range. However, spherical vario-

grams have been widely used in soil science, and seem appro-

priate, for example, to describe variation that originates from

pronounced and more or less uniformly spaced boundaries.

Stein (1999) suggested the use of a squared spherical function

for circumstances where a cut-off is required, and this should

be investigated further.

Third, likelihood-based methods require numerical optimi-

zation. In the past this has been thought to limit the size of the

data sets that can be analysed, but the AI algorithm of Gilmour

et al. (1995) is efficient and can be run with larger data sets

(a few thousand points). A problem remains for analysing large

data sets with spherical variogram functions. It might be possi-

ble to combine the AI algorithm with simulated annealing, by

using the latter just to find the distance parameter, and Stein

et al. (2004) consider approximate methods for the analysis of

large data sets based on likelihood.

A fourth consideration, that applies generally to E-BLUP

including regression kriging, is that if data sets are small then

the sampling error of the variance model may cause bias

when it is ‘‘plugged in’’ to obtain the E-BLUP. A Bayesian

approach to estimation has been suggested (Diggle et al.,

2003) to account for the uncertainty of estimation of the

variance parameters implicit in the computation of the pre-

diction error variance.

Conclusions

The REML–E-BLUP procedure can be used for spatial predic-

tion of soil properties which show a spatial trend, and has advan-

tages, both theoretical and practical, over other methods that soil

scientists have used to address this problem. Stein (1999) wrote
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that ‘REML and best linear unbiased prediction for [intrinsically

stationary random functions] form a coherent conceptual pack-

age’. We see the practical advantages of this coherence in the case

study where the computation of a variance model, the fixed

effects and the predictions are done with no ad hoc decisions

about how to approximate the variogram. The procedure is

even more compact and efficient when we use the average infor-

mation (AI) algorithm of Gilmour et al. (1995). We obtain esti-

mates of all parameters of this model, based on REML

estimation of the variance parameters (which are less biased

than regression kriging approaches based on OLS), and we can

use all data to estimate the variance parameters of the random

effect. By predicting the soil property at unsampled sites with the

E-BLUP we combine both the trend surface as a predictor with

the best estimate of the local random contribution. We also

obtain an estimate of the local prediction error variance.

For these reasons we would strongly advocate the use of

REML–E-BLUP by soil scientists for problems in spatial

prediction where a trend surface must be modelled or an

external drift variable can be exploited. In fact, the approach

may be used more generally. Stein (1999) casts doubt on the

general suitability of the standard approach to the estimation

of a variance model, based on estimates of the variogram for

particular lags or lag classes. His particular concern is that

the strong correlation between estimates of the variogram for

different lags can lead to biased estimates of the parameters

of fitted models of the variogram. While methods exist to

circumvent this problem they entail a degree of approxima-

tion (since the correct weighted least squares solution

depends on the variogram itself). We would therefore agree

with Stein (1999) and Diggle et al. (2003) that the REML–E-

BLUP approach is used for all spatial estimation problems

unless data sets are very large.

Soil scientists can use REML–E-BLUP for their prediction

problems with software from existing packages (although in

most cases they should be cautious when using spherical

correlation functions since these might not be reliably

estimated for reasons described above). The ASReml package

(Gilmour et al., 2002) is very efficient, and the same algo-

rithms are available in Genstat (Payne, 2003, Chapter 5) and

the SAMM package for the S-PLUS environment, although

with a smaller range of correlation functions. Similar facil-

ities are available in the MIXED procedure of SAS and in

geoR (Ribeiro & Diggle, 2001). Some Fortran code is

described by Pardo-Igúzquiza (1998b) and is available

from the website of the International Association for

Mathematical Geology (http://www.iamg.org/CGEditor/

index.htm).
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Appendix

The estimation variance of the E-BLUP

As stated in Equation (18) we require

Var xTp ðbt � tÞ þ gTo;pG
�1~u� up

h i
. We use

bt ¼ ðXTH�1XÞ�1
XTz and ~u ¼ �GZTPz;

with

C1;1 C1;2

C2;1 C2;2

" #
¼

�2 ðXTH�1XÞ�1 ��ðXTH�1XÞ�1
XTH�1ZG

��GZTH�1XðXTH�1XÞ�1 �G� �2GZTPZG

" #

where

H � �ZGZT þ I; and

P � H�1 �H�1XðXTH�1XÞ�1
XTH�1:

The variances of the two terms in the square brackets in

Equation (18) are, respectively,

Var xTp ðbt � tÞ
h i

¼ �2xTpC
1;1xp

and

Var gTo;pG
�1~u� up

h i
¼ ��2 gp;p � �gTo;pZ

TPZgo;p

n o
;

where ��2gp, p ¼ Var[up] (so gp,p is usually 1). We may there-

fore write

Var gTo;pG
�1~u� up

h i
¼ ��2gTo;pG

�1ðG� �GZTPZGÞG�1go;pþ

��2 gp;p � gTo;pG
�1go;p

	 

¼�2C2;2 þ ��2 gp;p � gTo;pG

�1go;p

	 

:

The covariance of these terms is given by

Cov xTp ðb���Þ;gTo;pG�1~u�up

h i
¼��2�xTp ðXTH�1XÞ�1

XTH�1Zgo;p

¼�2xTpC
1;2G�1go;p:

Then we can write Equation (18) as

Var ½ ~fp�fp�¼�2 xp;g
T
o;pG

�1
h iT

C�1 xp;g
T
o;pG

�1
h i

þ

��2 gp;p�gTo;pG
�1go;p

	 

:
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