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Abstract

This paper discusses the characteristics of regression-kriging (RK), its strengths and limitations, and illustrates these

with a simple example and three case studies. RK is a spatial interpolation technique that combines a regression of the

dependent variable on auxiliary variables (such as land surface parameters, remote sensing imagery and thematic maps)

with simple kriging of the regression residuals. It is mathematically equivalent to the interpolation method variously called

‘‘Universal Kriging’’ (UK) and ‘‘Kriging with External Drift’’ (KED), where auxiliary predictors are used directly to solve

the kriging weights. The advantage of RK is the ability to extend the method to a broader range of regression techniques

and to allow separate interpretation of the two interpolated components. Data processing and interpretation of results are

illustrated with three case studies covering the national territory of Croatia. The case studies use land surface parameters

derived from combined Shuttle Radar Topography Mission and contour-based digital elevation models and

multitemporal-enhanced vegetation indices derived from the MODIS imagery as auxiliary predictors. These are used to

improve mapping of two continuous variables (soil organic matter content and mean annual land surface temperature) and

one binary variable (presence of yew). In the case of mapping temperature, a physical model is used to estimate values of

temperature at unvisited locations and RK is then used to calibrate the model with ground observations. The discussion

addresses pragmatic issues: implementation of RK in existing software packages, comparison of RK with alternative

interpolation techniques, and practical limitations to using RK. The most serious constraint to wider use of RK is that the

analyst must carry out various steps in different software environments, both statistical and GIS.
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1. Introduction

In recent years, there has been an increasing
interest in hybrid interpolation techniques which
combine two conceptually different approaches to
modelling and mapping spatial variability: (a) inter-
polation relying solely on point observations of the
target variable; and (b) interpolation based on regres-
sion of the target variable on spatially exhaustive
auxiliary information. Several studies have shown that
.
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hybrid techniques can give better predictions than
either single approach (Knotters et al., 1995; Bishop
and McBratney, 2001; Bourennane and King, 2003;
Lloyd, 2005; Yemefack et al., 2005). These inter-
polators are currently used in a variety of applica-
tions, ranging from modelling spatial variability in
tropical rainforest soils (Yemefack et al., 2005), soil
mapping (Lopez-Granados et al., 2005; Leopold et
al., 2005), mapping of leaf area index (LAI) using
Landsat ETM+ data (Berterretche et al., 2005),
modelling spatial distribution of human diseases
(Pleydell et al., 2004), mapping water table (Desbar-
ats et al., 2002; Finke et al., 2004), mapping
abundance of fish in the ocean (Rivoirard, 2002),
mapping rainfall over Great Britain (Lloyd, 2005),
and mapping rainfall erosivity in the Algarve region
of Portugal (Goovaerts, 1999).

One of these hybrid interpolation techniques is
known as regression-kriging (RK) (Odeh et al.,
1995; Hengl et al., 2004b). It first uses regression on
auxiliary information and then uses simple kriging
(SK) with known mean (0) to interpolate the
residuals from the regression model. This allows
the use of arbitrarily-complex regression methods,
including generalized linear models. In spite of this
and other attractive properties of RK, it is not as
widely used in geosciences as might be expected.
This paper presents the theory behind RK, explains
it with a simple example, and demonstrates its
utility with three diverse case studies. It also shows
how RK can be implemented in today’s GIS and
statistical computing environments, identifies bar-
riers to its wider use, and proposes solutions for
these.
2. Theory

2.1. Regression-kriging

In the pure geostatistical approach, predictions
are commonly made by calculating some weighted
average of the observations (Webster and Oliver,
2001, p. 38):

ẑðs0Þ ¼
Xn

i¼1

li � zðsiÞ, (1)

where ẑðs0Þ is the predicted value of the target
variable at an unvisited location s0 given its map
coordinates, the sample data zðs1Þ; zðs2Þ; . . . ; zðsnÞ,
and their coordinates. The weights li are chosen
such that the prediction error variance is minimized,
yielding weights that depend on the spatial auto-
correlation structure of the variable. This interpola-
tion procedure is popularly known as ordinary

kriging (OK).
An alternative to kriging is the regression

approach, which makes predictions by modelling
the relationship between the target and auxiliary
environmental variables at sample locations, and
applying it to unvisited locations using the known
value of the auxiliary variables at those locations.
Common auxiliary environmental predictors are
land surface parameters, remote sensing images,
and geological, soil, and land-use maps (McKenzie
and Ryan, 1999). A common regression approach is
linear multiple regression (Draper and Smith, 1981;
Christensen, 1996), where the prediction is again a
weighted average, this time of the predictors:

ẑðs0Þ ¼
Xp

k¼0

b̂k � qkðs0Þ; q0ðs0Þ � 1, (2)

where qkðs0Þ are the values of the auxiliary variables
at the target location, b̂k are the estimated regres-
sion coefficients and p is the number of predictors or
auxiliary variables. (To avoid confusion with geogra-
phical coordinates, we use the symbol q, instead of the
more common x, to denote a predictor.)

RK combines these two approaches: regression is
used to fit the explanatory variation and SK with
expected value 0 is used to fit the residuals, i.e.
unexplained variation (Hengl et al., 2004b):

ẑðs0Þ ¼ m̂ðs0Þ þ êðs0Þ

¼
Xp

k¼0

b̂k � qkðs0Þ þ
Xn

i¼1

li � eðsiÞ, ð3Þ

where m̂ðs0Þ is the fitted drift, êðs0Þ is the inter-
polated residual, b̂k are estimated drift model
coefficients (b̂0 is the estimated intercept), li are
kriging weights determined by the spatial depen-
dence structure of the residual and where eðsiÞ is the
residual at location si. The regression coefficients b̂k

are estimated from the sample by some fitting
method, e.g. ordinary least squares (OLS) or,
optimally, using generalized least squares (GLS),
to take the spatial correlation between individual
observations into account (Cressie, 1993, p. 166):

b̂GLS ¼ ðq
T � C�1 � qÞ�1 � qT � C�1 � z, (4)

where b̂GLS is the vector of estimated regression
coefficients, C is the covariance matrix of the
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residuals, q is a matrix of predictors at the sampling
locations, and z is the vector of measured values of
the target variable. Once the trend has been
estimated the residual can be interpolated with
kriging and added to the estimated trend. In matrix
notation, this is written as (Christensen, 2001,
p. 277):

ẑðs0Þ ¼ qT0 � b̂GLS þ kT0 � ðz� q � b̂GLSÞ, (5)

where ẑðs0Þ is the predicted value at location s0, q0 is
the vector of pþ 1 predictors, and k0 is the vector of
n kriging weights used to interpolate the residuals.
This prediction model has an error that reflects the
position of new locations (extrapolation) in both
geographical and feature space:

s2RKðs0Þ ¼ ðC0 þ C1Þ � cT0 � C
�1
� c0

þ ðq0 � qT � C�1 � c0Þ
T
� ðqT � C�1 � qÞ�1

� ðq0 � qT � C�1 � c0Þ, ð6Þ

where C0 þ C1 is the sill variation and c0 is the
vector of covariances of residuals at the unvisited
location.

The estimation of the residuals is an iterative
process: first the drift model is estimated using OLS,
then the covariance function of the residuals is used
to obtain the GLS coefficients. Next, these are used
to re-compute the residuals, from which an updated
covariance function is computed, and so on.
Although this is by many geostatisticians recom-
mended as the proper procedure, Kitanidis (1994)
showed that use of the covariance function derived
from the OLS residuals (i.e. a single iteration) is
often satisfactory, because it is not different enough
from the function derived after several iterations to
affect the kriging interpolation.

The geostatistical literature uses many different
terms for what are essentially the same or at least
very similar techniques. All these follow the
universal kriging (UK) model that was introduced
by Matheron (1969) and that is by many statisti-
cians considered to be the (only) best linear
unbiased prediction model of spatial data (Chris-
tensen, 2001, Section 6). Originally, UK was
intended as a generalized case of kriging where the
trend is modelled as a function of coordinates,
within the kriging system. Thus, many authors
(Deutsch and Journel, 1998; Wackernagel, 1998;
Papritz and Stein, 1999) reserve the term Universal

Kriging for this case. If the drift is defined externally
as a linear function of some auxiliary variables,
rather than the coordinates, the term Kriging with

External Drift (KED) is preferred (Wackernagel,
1998; Chiles and Delfiner, 1999, p. 355). In the case
of UK or KED, the predictions are made as with
kriging, with the difference that the covariance
matrix of residuals is extended with the auxiliary
predictors qkðsiÞ’s (Webster and Oliver, 2001,
p. 183). However, the drift and residuals can also
be estimated separately and then summed. This
procedure was suggested by Ahmed and de Marsily
(1987) and Odeh et al. (1995) later named it
regression-kriging, while Goovaerts (1997, Section
5.4) uses the term Kriging with a trend model to refer
to a family of interpolators and refers to RK as
simple kriging with varying local means. KED and
RK differ in the computational steps used, however,
the resulting predictions and prediction variances
are the same, given the same point set, auxiliary
variables, regression functional form, and regression
fitting method. The mathematical proof is given in
the Appendix.

Although the KED seems, at first glance, to be
computationally more straightforward than RK,
the variogram parameters for KED must also be
estimated from regression residuals, thus requiring a
separate regression modelling step. This regression
should be GLS because of the likely spatial
correlation between residuals. Note that many
analyst use instead the OLS residuals, which may
not be too different from the GLS residuals
(Yemefack et al., 2005). However, they are not
optimal if there is any spatial correlation, and
indeed they may be quite different in the case of
highly correlated, clustered sample points. Also a
limitation of KED is the instability of the extended
matrix in the case that the covariate does not vary
smoothly in space (Goovaerts, 1997, p. 195). RK
has the advantage that it explicitly separates trend
estimation from residual interpolation, allowing the
use of arbitrarily complex forms of regression,
rather than the simple linear techniques that can
be used with KED. In addition, it allows the
separate interpretation of the two interpolated
components. For these reasons we advocate the
use of the term regression-kriging over universal

kriging. Hence, RK is a more descriptive synonym
of the same generic interpolation method.

2.2. A simple example of regression-kriging

The next section illustrates how RK computa-
tions work and compares it to OK using the
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Fig. 1. Comparison of ordinary kriging and regression-kriging using a simple example with 5 points (Burrough and McDonnell, 1998,

pp. 139–141): (a) location of points and unvisited site; (b) values of covariate q; (c) variogram for target and residuals, (d) OLS and GLS

estimates of the regression model and results of prediction for a 10� 10 grid using ordinary kriging (e) and regression-kriging (f). Note

how the RK maps reflects the pattern of the covariate.

T. Hengl et al. / Computers & Geosciences 33 (2007) 1301–13151304
textbook example from Burrough and McDonnell
(1998, pp. 139–141), in which five measurements are
used to predict a value of the target variable (z) at
an unvisited location (s0) (Fig. 1a). We extend this
example by adding a hypothetical auxiliary data
source: a raster image (10� 10 pixels) (Fig. 1b),
which has been constructed to show a strong
negative correlation with the target variable at the
sample points.

The RK predictions are computed as follows:
(1)
 Determine a linear model of the variable as
predicted by the auxiliary map q. In this case the
correlation is high and negative with OLS
coefficients b0 ¼ 6.64 and b1 ¼ �0:195 (Fig. 1d).
(2)
 Derive the OLS residuals at all sample locations
as

e�ðsiÞ ¼ zðsiÞ � ½b0 þ b1 � qðsiÞ�. (7)

For example, the point at (x ¼ 9, y ¼ 9) with
z ¼ 2 has a prediction of 6:64� 0:195 � 23 ¼
1:836, resulting in an OLS residual of
e� ¼ �0:164.
(3)
 Model the covariance structure of the OLS
residuals. In this example the number of points
is far too small to estimate the autocorrelation
function, so we follow the original text in using a
hypothetical variogram of the target variable
(spherical model, nugget C0 ¼ 2:5, sill C1 ¼ 7:5
and range R ¼ 10) and residuals (spherical model,
C0 ¼ 2, C1 ¼ 4:5, R ¼ 5). The residual model is
derived from the target variable model of the text
by assuming that the residual variogram has
approximately the same form and nugget but a
somewhat smaller sill and range (Fig. 1c), which is
often found in practice (Hengl et al., 2004b).
(4)
 Estimate the GLS coefficients using Eq. (4). In this
case we get just slightly different coefficients b0 ¼

6:68 and b1 ¼ �0:199. The GLS coefficients will
not differ much from the OLS coefficients as long
there is no significant clustering of the sampling
locations (Fig. 1d) as in this case.
(5)
 Derive the GLS residuals at all sample locations
as

e��ðsiÞ ¼ zðsiÞ � ½b0 þ b1 � qðsiÞ�. (8)
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Note that the b now refer to the GLS
coefficients.
(6)
 Model the covariance structure of the GLS
residuals as a variogram. In practice this will
hardly differ from the covariance structure of
the OLS residuals.
(7)
 Interpolate the GLS residuals using SK with
known expected mean of the residuals (by
definition 0) and the modelled variogram. In
this case at the unvisited point location ð5; 5Þ the
interpolated residual is �0:081.
(8)
 Add the GLS surface to the interpolated GLS
residuals at each prediction point. At the
unvisited point location ð5; 5Þ the auxiliary
variable has a value 12, so that the prediction
is then:

ẑð5; 5Þ ¼ b0 þ b1 � qi þ
Xn

i¼1

liðs0Þ � eðsiÞ

¼ 6:68� 0:199 � 12� 0:081 ¼ 4:21, ð9Þ

which is, in this specific case, a slightly different
result than that derived by OK with the
hypothetical variogram of the target variable
(ẑ ¼ 4:30).
The results of OK (Fig. 1e) and RK (Fig. 1f) over
the entire spatial field are quite different in this case,
because of the strong relation between the covariate
and the samples. In the case of RK, most of
variation in the target variable (82%) has been
accounted for by the trend. Depending on the
strength of the correlation, the RK might turn to
pure kriging (no correlation) or pure regression
(high correlation, pure nugget variogram). In that
sense, pure kriging and pure regression should be
considered as only special cases of a generic spatial
prediction technique (Gotway and Stroup, 1997;
Christensen, 2001; Pebesma, 2004).

3. Case studies

We will now demonstrate how can RK be used to
map different types of environmental variables. We
present three mapping exercises at the national
level, using the same set of predictors and the
generic mapping framework based on RK explained
in detail in Hengl et al. (2004b). The key character-
istics of this framework are:
�
 Factor analysis of covariates (raster maps) is
used prior to interpolation to reduce the multi-
collinearity and to be able to compare results of
fit for different predictors (Hengl et al., 2004b).

�
 The logistic transformation of the target variable

is used to account for skewed distribution and
prevent predictions outside the physical range
(Hengl et al., 2004b, pp. 90–91).

�
 Stepwise regression is used to select regression

predictors, to avoid spurious detail in the
prediction maps.

Sixteen environmental predictors were prepared
for the national territory of Croatia from two
sources of data: land surface and mutlitemporal
satellite radiometric images. These are the two most
commonly used types of environmental predictors
of soil and vegetation (Dobos et al., 2000; Hengl et
al., 2002). The topography was parameterized with
elevation data from two sources: (a) Shuttle Radar
Topography Mission (SRTM) and (b) a DEM
interpolated from the contour lines digitized from
the 1:25K topo-maps. An SRTM 90m resolution
DEM was downloaded from the International
Agriculture Research Consortium for Spatial
Information server (http://srtm.csi.cgiar.
org).

Prior to derivation of land surface parameters,
the SRTM elevation must be estimated from the
raw SRTM data (which is a surface, not elevation,
model) by filtering out the canopy (Rabus et al.,
2003). Another problem with SRTM data is that it
may contain substantial noise and artefacts, so that
the nominal vertical accuracy (RMSE) of 15m is
often over-optimistic. Therefore, the average eleva-
tion was computed as a weighted average between
the DEM derived from the contours from the 1:25K
topo maps and the SRTM DEM. This is a good
compromise because the SRTM DEM will show
more detail in the plain areas, while the DEM
derived from the topo maps is more accurate in the
areas of dense contours. The land surface para-
meters slope gradient in % (SLOPE), wetness index
(CTI) and direct incoming solar radiation (SOLAR)
expressed in kWh=m2 were computed from the
DEM. The height of canopy (CANH) was com-
puted as the difference between the two surface
models (Kellndorfer et al., 2004) (Fig. 2). SLOPE
and CANH were derived in the Integrated Land and
Water Information System (ILWIS) GIS (Hengl
et al., 2003) and CTI and SOLAR were derived in the
SAGA GIS package (http://saga-gis.org).

Vegetation was represented by a set of enhanced
vegetation index (EVI) images provided as band 2

http://srtm.csi.cgiar.org
http://srtm.csi.cgiar.org
http://saga-gis.org
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Fig. 2. Window showing some auxiliary maps used as environmental predictors: digital elevation model (DEM), solar irradiation

(SOLAR), canopy height (CANH), and enchanced vegetation index for February (EVI02) and July (EVI06) of 2004.
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of the 11-band Moderate Resolution Imaging
Spectroradiometer (MODIS) imagery (http://
modis.gsfc.nasa.gov), freely available from
the NASA servers. Sixteen-day MODIS composites
at a spatial resolution of 250m for the year 2004
(a total of 22) were first filtered to remove artefacts
caused by clouds and snow, using the statistical
procedure described in Hengl et al. (2004a,
pp. 100–101). These were then combined as pair
averages to obtain 11 images, i.e. approximately one
image per month (Fig. 2). All raster maps were
brought to the same grid resolution of 200m (full
image 2353� 2370 pixels), which corresponds to a
working scale of about 1:200K (Hengl, 2006).

From sixteen original images we then derived the
same number of factors using principal component
analysis in ILWIS. Visual inspection of the PCs
showed that the components 9–11 repeated previous
features with much less contrast, while components
12–16 just reflect noise in the input images. Much of
the noise in the components comes from the MODIS
images, which indicates that even more sophisticated
methods to filter such images are needed. Thus the
first eight PCs were used as orthogonal variables for
the stepwise regression.

In all case studies we used the GSTAT package
both to automatically fit the variograms of residuals
and to produce final predictions (Pebesma, 2004).
For fitting of the variograms, we used the exponen-
tial model and weighted least squares method to
emphasize shorter distances and lags with higher
number of point pairs (Nj=h2

j ). In addition to the
map showing final predictions, GSTAT also pro-
duces the UK variance map, which is the estimate of
the uncertainty of the prediction model, i.e. preci-
sion of prediction. The GSTAT command files and

http://modis.gsfc.nasa.gov
http://modis.gsfc.nasa.gov
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detailed explanation of the procedures is available
at http://spatial-analyst.net.

3.1. Example 1: mapping soil organic matter

In the first example we demonstrate interpolation
of a continuous variable that is assumed to be
correlated with relief and vegetation, but the
physical model is unknown. We used a set of 2087
measurements of the soil organic matter content
(Fig. 3a) from the Croatian Soil Database (Martinović
and Vranković, 1997; Antonić et al., 2003). Values
for OM ranged from 0% to 64% with an average
value of 7.6 and s.d. 7.5%. The data were
transformed using logistic transformation to reduce
right skewness by using the physical limits OMmin ¼
Fig. 3. Interpolation of organic matter in topsoil using RK: (a) origina

area of interest, and (d) prediction error (RK variance).
0% and OMmax ¼ 100%. The few locations with
OM ¼ 0% were replaced with the estimated la-
boratory measurement error of 0.1%, otherwise it
would not be possible to convert these values to
logits. After logistic transformation the average
value was OMþþ ¼ �2:594 with s.d. of 0.923.

Stepwise regression selected PC1,2,4,5,6 and 8 as
significant predictors. The best predictors were PC2
and PC6, which reflect CTI, mean EVI and
elevations—as we get to higher elevations the OM
tends to increase because of the cooler temperatures
and consequently reduced soil microbiological
activity (Hengl et al., 2002). The predictors ex-
plained 40% of the variation in OM (Fig. 3b). The
variogram of residuals was fitted with exponential
model (C0 ¼ 0:443, C1 ¼ 0:071, and R ¼ 31178m),
l sampled values, (b) regression plot, (c) predicted values of whole

http://spatial-analyst.net
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with a relatively high nugget to sill ratio. Although
the variogram model indicates poor predictive
possibilities, almost half of variation has been
explained by the regression model. Such variograms
a typical effect of removing the feature-space
structure: the remaining nugget is smaller or the
same as in the original variogram, but the total sill is
reduced. In this case, the residuals showed about
two times smaller sill and about three times shorter
range of spatial correlation than the target variable
(C0 ¼ 0:553, C1 ¼ 0:365, and R ¼ 84129m). Con-
sequently, the RK prediction map (Fig. 3c) closely
follows the map of elevation, with few hot-spots in
regions where the residuals were high. Finally, the
prediction model explained 64% of total variation.
The remaining areas of high prediction error
(Eq. (6)) can be seen in Fig. 3d. The map of the
prediction error can be now used to locate
Fig. 4. Interpolation of occurrence of yew (Taxus baccata L.): (a) 3

(c) predicted values of whole area of interest, and (d) prediction error
additional samples and consider using either larger
support size or more detailed predictors.

3.2. Example 2: mapping presence/absence of yew

The second example is an interpolation of a binary
variable: presence or absence of a plant species in
each grid cell, in this case yew (Taxus baccata L.).
The result is the probability of occurrence (logistic-
regression model), based on 364 sample plots
arranged in a regular grid, in which yew was either
present or absent (Fig. 4a). This grid was acquired
from the on-line Flora Croatica database (Nikolić
and Topić, 2005). In this case the predictors
accounted for only 22% of total variation
(Fig. 4b). The stepwise regression procedure selected
six PCs ð2; 4; 5; 6; 8; 10Þ, the best predictor in fact
being CANH. This is probably because yew is a
64 observations on a regular grid, (b) logistic regression plot,

(RK variance).
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species that favours shady sites, e.g. areas of deep
boreal forest. The variogram of residuals was fitted,
as in previous case study, with an exponential model
(C0 ¼ 4:126, C1 ¼ 5:336 and R ¼ 13797m). Again,
the nugget variation was rather significant. In
addition, the prediction error is rather high,
indicating that only 46% of variation has been
explained by the model (Fig. 4d). Note also from
Fig. 4d that the prediction error mainly reflects
spatial location of points. The problem with this
data set is obviously in the sampling design and
sampling density. In this case, the short-range
variation is completely under-sampled, the shortest
spacing between the points is about 13 km and such
sampling density probably does not comply with the
targeted 200m grid resolution.
3.3. Example 3: mapping land surface temperature

The last example demonstrates that RK can also be
used for calibration of predictions made by running a
physically based simulation model. In this case the
target variable (z) is first modelled using a determi-
nistic model which does not need any measurements
but only input parameters. The observations can then
be used to calibrate the model by kriging the residuals:

ẑðs0Þ ¼ b0 þ b1 � ẑmodðs0Þ

þ
Xn

i¼1

li � ½zðsiÞ � ðb0 þ b1 � ẑmod ðs0ÞÞ�, ð10Þ

where ẑmod is the soil property predicted using the
physical model, and b0 and b1 are calibration
coefficients, which are also derived using the GLS
procedure. The example we use here is mapping of
average annual land surface temperature (TEMP),
which is modelled as a function of elevation, short-
wave radiation ratio and leaf area index (Wilson and
Gallant, 2000, p. 98):

TEMP ¼ Tb �
DT � ðDEM� DEMbÞ

1000

þ C � S �
1

S

� �
� 1�

LAI

LAImax

� �
, ð11Þ

where DEM is the elevation at the prediction location,
DEMb is the elevation of the reference climatic station
(Zagreb), Tb is the temperature at the reference
station, DT is the temperature gradient (here 5:06 	C
per 1000m elevation), C is an empirical constant (here
1 	C), S is the short-wave radiation ratio, LAI is the
leaf area index at the grid cell and LAImax is the
maximum leaf area index. TEMP was derived using
ILWIS scripts (Hengl et al., 2003), following Eq. (11).

The map of TEMP from the modelled tempera-
ture was calibrated using actual measurements from
year 2004, here annual temperatures measured at
127 climatic stations (Fig. 5a) provided by the
Croatian meteorological and hydrological service.
These ranged from 4.7 to 16:5 	C, average 11:6 	C.
The physical limits for the logit transformation were
set at long-term minimum and maximum annual
temperatures (zmin ¼ �5 and zmax ¼ 30). The model
used in Eq. (11) proved to be good estimator of the
temperatures, achieving R2 ¼ 0:564 (Fig. 5b). The
regression coefficients of actual vs. predicted were
b0 ¼ �0:193 and b1 ¼ 1:073 (they would be 0 and 1
for a perfect, unbiased model). The calibration
residuals can then be used to improve local
predictions. These were fitted with an exponential
model (C0 ¼ 1:0885, C1 ¼ 14:4617, and R ¼

1; 031; 960m). The final predictions are shown in
Fig. 5c. Note that the prediction model accounted
for almost 95% of the total variation in the data, so
that the prediction errors are rather small (Fig. 5d).
Still, there is a nugget variation of about 
1 	C that
should not be ignored.

4. Discussion and conclusions

Clearly, RK is powerful spatial prediction tech-
nique that can be used to interpolate sampled
environmental variables (both continuous and
categorical) from large point sets. The barriers to
widespread routine use of RK in environmental
modelling and mapping are as follows. First, the
statistical analysis in the case of RK is more
sophisticated than for simple mechanistic or kriging
techniques. Second, RK is computationally de-
manding and often cannot be run on standard
PCs. The third problem is that many users are
confused by the quantity of interpolation options,
so that they are never sure which one is the most
appropriate. In addition, there is a lack of user-
friendly GIS environments to run RK. This is
because, for many years GIS technologies and
geostatistical techniques have been developing
independently. We now address these and other
issues regarding the practical use of RK.

4.1. Competitors to RK

The competitors to RK include completely
different methods that may fit certain situations
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Fig. 5. Interpolation of land surface temperature: (a) original sampled values, (b) calibration plot, (c) predicted values of whole area of

interest, and (d) prediction error (RK variance).

T. Hengl et al. / Computers & Geosciences 33 (2007) 1301–13151310
better. If the auxiliary data are of different origin
and reliability, the Bayesian maximum entropy
approach might be a better alternative (D’Or,
2003). There are also machine-learning techniques
that combine neural network algorithms and robust
interpolators. Henderson et al. (2005) used
decision trees to predict various soil para-
meters from large quantity of soil profile data and
with the help of land surface and remote sensing
attributes. This technique is flexible, optimizes local
fits and can be used within a GIS. However, it is
statistically suboptimal because it ignores spatial
location of points during the derivation of
classification trees. The same authors further
reported (Henderson et al., 2005, pp. 394–396)
that, although there is still some spatial correla-
tion in the residuals, it is not clear how to
employ it.
RKmust also be compared with alternative kriging
techniques, such as OK and cokriging (CK). The
advantage of OK is that it is less complicated in its
use and included in most software packages. How-
ever, when auxiliary information is available in the
form of maps of covariates that can explain part of
the variation in the target variable, then RK outper-
forms OK because it exploits the extra information.
Colocated CK does make use of the auxiliary
information, but is developed for situations in which
the auxiliary information is not spatially exhaustive
(Knotters et al., 1995). CK also requires simultaneous
modelling of both direct and cross variograms, which
can be time-consuming for large number of covari-
ates. In the case where the covariates are available as
maps, RK will generally be preferred over CK,
although CK may in some circumstances give super-
ior results (Goovaerts, 1999).
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4.2. Software implementation

There is still a large gap between what is possible
for some (researchers) and what is available to many
(users). No GIS package includes all of generalized
linear models, variogram fitting, iterative estimation
of residual variograms, and kriging, let alone their
seamless integration. We have compared different
aspects of geostatistical packages listed by the AI-
GEOSTATS group (http://ai-geostats.
org) and several well-known GIS packages (Table 1,
see also supplementary materials at http://
spatial-analyst.net). Although the UK
(using coordinates) is available in most geostatis-
tical packages, KED with multiple auxiliary maps
can be run in only a limited number of packages. In
fact, only Isatis (http://geovariances.com),
SAGA (http://saga-gis.org), and GSTAT
(http://-gstat.org) as stand-alone applica-
tion or integrated into R (R Development Core
Team, 2004; Pebesma, 2004), GRASS (http://
geog.uni-hannover.de/grass) or Idrisi
(http://clarklabs.org) offer a possibility to
interpolate a variable using auxiliary maps. We have
tested RK in all these packages to discover that RK
in Isatis is limited to a use of a single (three in script
mode) auxiliary maps (Bleines et al., 2005). In Idrisi
GLS regression coefficients cannot be estimated and
the system is rather unstable. In GSTAT, both RK
predictions and simulations (predictors as base
maps) at both point and block support can be run
by defining short scripts, which can help automatize
interpolation of large amounts of data. However,
GSTAT implements the algorithm with extended
matrix (KED), which means that both the values of
predictors and of target variable are used to
estimate the values at each new location, which
for large data sets can by time-consuming or can
lead to computational problems (Leopold et al.,
2005).

Setting UK in GSTAT to a smaller window
search can lead to termination of the program due
to the singular matrix problems. In fact, local UK
with a global variogram model is not valid because
the regression model will differ locally, hence the
algorithm should also estimate the variogram model
for residuals for each local neighbourhood. The
singular matrix problem will happen especially
when indicator variables are used as predictors or
if the two predictor maps are highly correlated. Our
experience with GSTAT was that interpolation of
more than 1000 points over 1M of pixels can last up

http://ai-geostats.org
http://ai-geostats.org
http://spatial-analyst.net
http://spatial-analyst.net
http://geovariances.com
http://saga-gis.org
http://-gstat.org
http://geog.uni-hannover.de/grass
http://geog.uni-hannover.de/grass
http://clarklabs.org
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to several hours on a standard PC. To run
simulations in GSTAT with the same settings will
take even more time. This clearly proves that,
although KED procedure is mathematically elegant,
such problems show that it might be more effective
for real-life applications to fit the trend and
residuals separately (RK) instead of through use
of an extended matrix (KED). Another limitation of
GSTAT is that it is a stand-alone application and
the algorithms cannot be adjusted easily.

To allow extension of GSTAT functionalities and
integration of its functionalities with other statis-
tical functions, the developer of GSTAT, with a
support of colleagues, developed an R package
called spatial (http://r-spatial.source-
forge.net). R itself provides rich facilities for
regression modelling, including GLS. The only
problem here is that each step must be run by the
analyst, who must really be an R expert. The open-
source packages open the door to analyses of
unlimited sophistication. However, they were not
designed with graphical user interface, wizards, or
interaction as is typical for commercial GIS, so are
not easily used by non-experts. There is thus
opportunity both for commercial GIS to incorpo-
rate RK ideas, or for open-source software to
become more user-friendly.

4.3. Limitations of RK

Finally, there are some limitations to routine use
of RK. If any of these problems occur, RK can give
even worse results than even non-statistical, empiri-
cal interpolators such as Thiessen polygons or
moving averages. The following difficulties might
also be considered as challenges for the geostatisti-
cians:
(1)
 Data quality: RK relies completely on the
quality of data. If the data comes from different
sources and have been sampled using biased or
unrepresentative design, the predictions might
be even worse than with simple mechanistic
prediction techniques (Example 2, Fig. 4). Even
a single bad data point can make any regression
arbitrarily bad, which affects the RK prediction
over the whole area.
(2)
 Under-sampling: For regression modelling, the
multivariate feature space must be well-repre-
sented in all dimensions. For variogram model-
ling, an adequate number of point-pairs must be
available at various spacings. Webster and
Oliver (2001, p. 85) recommend at least 50 and
preferably 300 points for variogram estimation.
Neter et al. (1996) recommends at least 10
observations per predictor for multiple regres-
sion. We strongly recommend using RK only for
data sets with more than 50 total observations
and at least 10 observations per predictor to
prevent over-fitting.
(3)
 Reliable estimation of the covariance/correlation

structure: The major dissatisfaction of using
KED or RK is that both the regression model
parameters and covariance function parameters
need to be estimated simultaneously. However,
in order to estimate coefficients we need to know
covariance function of residuals, which can only
be estimated after the coefficients (the chick-
en–egg problem). Here, we have assumed that a
single iteration is a satisfactory solution,
although someone might also look for other
iterative solutions (Kitanidis, 1994).
(4)
 Extrapolation outside the sampled feature space:
If the points do not represent feature space or
represent only the central part of it, this will
often lead to poor estimation of the model and
poor spatial prediction (Example 1, Fig. 4d).
This is especially important for linear modelling
where the prediction variance exponentially
increases as we get closer to the edges of the
feature space. For this reason it is important
that the points be well spread at the edges of the
feature space and that they be symmetrically
spread around the center of the feature space
(Hengl et al., 2004c). An assessment of the
extrapolation in feature space can also be used
to allocate additional point samples that can be
used to improve the existing prediction models.
This also justifies use of multiple predictors to fit
the target variable, instead of using only the most
significant predictor or first principal com-
ponent, which is, for example, advocated by
the Isatis development team (Bleines et al.,
2005).
(5)
 Predictors with uneven relation to the target

variable: Auxiliary maps should have a constant
physical relationship with the target variable in
all parts of the study area, otherwise artefacts
will be produced. An example is a single NDVI
as a predictor of topsoil organic matter. If an
agricultural field has just been harvested (low
NDVI), the prediction map will (incorrectly)
show very low organic matter content within the
crop field.

http://r-spatial.sourceforge.net
http://r-spatial.sourceforge.net
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(6)
 Intermediate-scale modelling: RK has not been
adapted to fit data locally, with arbitrary
neighbourhoods for the regression as can be
done with kriging with moving window (Walter
et al., 2001). Many practitioners would like to
adjust the neighbourhood to fit their concepts of
the scale of processes that are not truly global
(across the whole study area) but not fully local
either.
4.4. Next steps

What the programmers might consider for future
is the refinement of (local) RK in a moving window.
This will allow not only better data fitting, but will
also allow users to visualize variation in regression
(maps of R2 and regression coefficients) and
variogram models (maps of variogram parameters).
Note that the RK with moving window would need
to be fully automated, which might not be an easy
task considering the computational complexity.
Also, unlike the OK with moving window (Walter
et al., 2001), RK has much higher requirements
considering the minimum number of observations
(at least 10 per predictor, at least 50 to model
variogram). In general, our impression is that much
of the procedures (regression and variogram model-
ling) in RK can be automated and amount of data
modelling definitions expanded (local or global
modelling, transformations, selection of predictors,
type of GLMs etc.), as long as the point data set is
large and of high quality. Ideally, the user should be
able to easily test various combinations of input
parameters and then (in real-time) select the one
that produces most satisfactory predictions.

In conclusion, RK is a flexible method for
modelling and mapping which offers conceptual
advantages over alternative methods. We hope it
becomes a routine part of the geostatistical toolbox.
A task for the programmers in the near future will
be to incorporate statistical procedures, such as
step-wise regression, neural networks, automated
variogram modelling, simulated annealing, unsu-
pervised fuzzy classification and similar, within GIS
user environments. Because many statistical techni-
ques can be automated, integration of GIS and
statistical algorithms should open the possibility to
easily and quickly interpolate dozens of variables by
using dozens of predictors. Nevertheless, analysts
should have the final control to adjust the system as
needed. To do this, they should have full insight into
algorithms used.
Appendix A. Proof of equivalence of RK and KED

Start from kriging with external drift (or universal
kriging) where the predictions are made as in OK
using ẑKEDðs0Þ ¼ kTKED � z. The KED kriging
weights (lTKED) are obtained by solving the system
(Wackernagel, 1998, p. 179):

C q

qT 0

" #
�

kKED

/

" #
¼

c0

q0

" #
, (A.1)

where / is a vector of Lagrange multipliers. Writing
this out yields:

C � kKED þ q � / ¼ c0,

qT � kKED ¼ q0. ðA:2Þ

From this follows:

qT � kKED ¼ qT � C�1 � c0 � qT � C�1 � q � / (A.3)

and hence:

/ ¼ ðqT � C�1 � qÞ�1 � qT � C�1 � c0

� ðqT � C�1 � qÞ�1 � q0, ðA:4Þ

where the identity qT � kKED ¼ q0 has been used.
Substituting / back into Eq. (A.2) shows that the
KED weights equal (Papritz and Stein, 1999, p. 94):

kKED ¼ C�1 � c0 � C�1 � q

� ½ðqT � C�1 � qÞ�1 � qT � C�1 � c0

� ðqT � C�1 � qÞ�1 � q0�

¼ C�1 � ½c0 þ q � ðqT � C�1 � qÞ�1

� ðq0 � qT � C�1 � c0Þ�. ðA:5Þ

Let us now turn to RK. Recall from Eq. (4) that the
GLS estimate for the vector of regression coeffi-
cients is given by

b̂GLS ¼ ðq
T � C�1 � qÞ�1 � qT � C�1 � z (A.6)

and weights for residuals by

kT0 ¼ cT0 � C
�1. (A.7)

Substituting these in RK formula (Eq. (5)) gives

ẑRKðs0Þ ¼ qT0 � b̂GLS þ kT0 � ðz� q � b̂GLSÞ

¼ ½qT0 � ðq
T � C�1 � qÞ�1 � qT � C�1 þ cT0 � C

�1

� cT0 � C
�1
� q � ðqT � C�1qÞ�1 � qT � C�1� � z
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¼ C�1 � ½cT0 þ qT0 � ðq
T � C�1 � qÞ�1 � qT

� cT0 � C
�1
� q � ðqT � C�1qÞ�1 � qT� � z

¼ C�1 � ½c0 þ q � ðqT � C�1 � qÞ�1

� ðq0 � qT � C�1c0Þ� � z. ðA:8Þ

The left part of the equation is equal to Eq. (A.5),
which proves that KED will give the same predic-
tions as RK if same inputs are used. A detailed
comparison of RK and KED is also available as
supplementary material.
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