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This paper presents a pedometric approach to updating the Dutch 1:50,000 national soil map for the peatlands,
and illustrates this approach for a 187,525 ha area in the northern peatlands. This is the first time that digital soil
mapping replaces conventional soil mapping in a nationwide, government-funded soil survey program in the
Netherlands. Soil classes were updated indirectly through mapping two quantitative diagnostic soil properties:
the thickness and starting depth of the peat layer. From these, five major soil groups could be constructed. Be-
cause the point data were zero-inflated, a two-step simulation approach was implemented. First, peat pres-
ence/absence indicators were simulated from probabilities of peat occurrence that were predicted with a
generalized linear model. Second, conditional peat thickness values were simulated from kriging with external
drift predictions. The indicator and peat thickness simulations were combined to obtain simulations of the un-
conditional peat thickness. A similar approachwas followed for the starting depth. From the simulated soil prop-
erties, probability distributions of soil groups were derived. These groups were refined with information on
(static) soil properties derived from the 1:50,000 map to obtain soil classes according to the 1:50,000 legend.
The updated raster map was then incorporated in the 1:50,000 polygon map. The prediction models were cali-
brated with legacy point data, that were updated for peat thickness before being used, in addition to a set of
newly acquired point data. The uncertainty associated to the updated peat thickness values in the legacy dataset
was quantified and accounted for by the prediction models. The peat thickness map and a map with three soil
orders were validated with independent probability sample data. The overall purity of the soil order map was
66% for both subareas. For subarea 1 this was a 12% purity improvement compared to the current 1:50,000
map, for subarea 2 this was 3%. For subarea 1, the mean absolute error of the predicted peat thickness was
23.5 cm, and the R2 is 0.50. For subarea 2 these accuracy measures were 30.9 cm and 0.65. We conclude that na-
tionwide updating the 1:50,000 map with pedometric techniques is feasible. In order to increase the value and
usability of the legacy point data as well as the large set of newly acquired field observations and the updated
1:50,000 map, we recommend installation of a soil monitoring network in the Dutch peatlands.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

The national soil map at scale 1:50,000 (Steur and Heijink, 1991) is
the main source of soil information in the Netherlands. This map was
initially created for soil suitability analysis of various land-use systems
(van Lynden et al., 1985; Sonneveld et al., 2010), but is since the
1990s increasingly used for environmental and agro-economic analyses
in support of policy-making. Examples includemodeling of nutrient and
pollutant fluxes in the soil (van der Salm et al., 1996; Hack-ten Broeke
et al., 1999; Kros et al. 2011), inventories and monitoring of carbon
stocks (Schulp and Veldkamp, 2008; Reijneveld et al., 2009), modeling
soil subsidence (Hoogland et al., 2012), implementation of the EU
Thematic Soil Strategy (Bouma and Droogers, 2007) and simulation
studies on greenhouse gas emissions from peat soils (Nol et al., 2010;
van Beek et al., 2011).

Organic soils cover 527,000ha, or almost 16% of the land surface area
of the Netherlands. The Dutch soil classification system (de Bakker and
Schelling, 1966) distinguishes twomain types of organic soils: peat soils
(peat layer N 0.4m thick and startingwithin 0.4m from the surface) and
peaty soils (peat layer 0.05–0.4 m thick and starting within 0.4 m from
the surface). Intensive agricultural use and deep drainage of these soils
have resulted in major changes in soil conditions since the completion of
the 1:50,000 survey in 1995 (the first map sheets date from the 1960s).
The peat oxidation and compaction rate is estimated between 5 and
10 mm year−1 (van den Akker et al., 2008; Hoogland et al., 2012). As a
consequence, peat soils may have changed into peaty soils, and peaty
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soils intomineral soils. A reconnaissance surveyof peat soils in the eastern
part of theNetherlands showed that the acreage of peat soilswas reduced
by about 50% (van Kekem et al., 2005; de Vries et al., 2009). This clearly
illustrated the need for an updated soil map.

The Dutch national government recognizes the importance of good
quality, up-to-date soil information and has acknowledged the need
for a map update. The government commissioned an extensive
updating program that aims to have an updated map for 365,000 ha of
peatlands ready by the end of 2014. The deep peat soils (peat layer
starting within 0.4 m below the surface and extending deeper than
1.2 m below surface) of the western and northern fen peat areas
(162,000 ha) were not part of the updating program. The peat layer in
these areas can be up to 6 m deep. Here, oxidation and compaction of
peat do not directly result in a change of soil class. The national soil
map was, therefore, considered to be up-to-date for these areas.
Updating by means of conventional soil mapping started in 2009, but
this soon turned out to be too expensive and too slow. In 2011 itwas de-
cided to continue themap update programbymeans of digital soilmap-
ping (DSM) (McBratney et al., 2003). Kempen et al. (2012c) have shown
that DSM can be an efficient alternative to conventional soilmapping for
updating the national soil map in terms of accuracy and costs, but the
use of DSM for map updating in the Netherlands has so far been exper-
imental and applied to small case study areas only (Kempen et al., 2009,
2012b). This was the first time that DSM was going to be made opera-
tional in a government-funded, nationwide soil mapping program.

Making DSM operational for updating the national soil map for the
peatlands brings two challenges. The first relates to the use of point
data from different sources and different quality. The Dutch soil infor-
mation system BIS stores spatially referenced soil profile descriptions
from over 325,000 locations, which were collected during surveys and
research projects since the 1950s. These data are an important resource
for DSM (Carré et al., 2007; Sulaeman et al., 2013), but, given their age,
may not properly represent actual field conditions for dynamic soil
properties such as the thickness of the peat layer. Though this might
limit their utility for updating, these data may still provide relevant in-
formation. Sincewe aimed tomakemost out of existing data, we decid-
ed to update the legacy soil point data and use these data, together with
newly acquired field data, in our modeling framework. Hereby taking
into account the uncertainty associated to the updated point data.

The second challenge concerns the mapping methodology. Kempen
et al. (2009, 2012b) have shown that pedometricmapping of soil classes
can be challenging, especially when one wants to model the spatial
correlation structure. Calibrating a generalized linear geostatistical
model (GLGM) is complex and computationally demanding (Diggle
et al., 1998; Christensen, 2004). Alternatively, multinomial logistic
regression, which is much easier to implement than the GLGM, has as
disadvantage that certain structures in the data can cause numerical
problemswhen fitting themodel in the presence of categorical covariates
(Hosmer and Lemeshow, 2000). Furthermore, the spatial correlation
structure is not accounted for. The same holds for (boosted) classification
trees and random forests that become increasingly popular for mapping
categorical soil attributes (e.g. Heung et al., 2014; Odgers et al., 2014;
Pahlavan Rad et al., 2014; Subburayalu et al., 2014). We, therefore, decid-
ed to take a different approach to updating soil class maps. Instead of
mapping soil classes,wemapped (continuous) key diagnostic soil proper-
ties as proposed by Kempen (2011). The soil classes of the 1:50,000
legend are defined by a set of measurable soil properties. We focus on
those properties required to distinguish peat soils, peaty soils andmineral
soils, which are the thickness and starting depth of the peat layer. The
type of peat, peaty or mineral soil class according to the 1:50,000 legend
can then be reconstructed by refining the predictions with information
on (static) properties obtained from the current soil map. This mapping
approach also better suits the information demand by several soil data
users, who have expressed interest in quantitative information about
the thickness of the peat layer instead of qualitative information in the
form of a peat soil class.
The aim of this paper is to describe, illustrate and validate the
geostatistical mapping approach for updating the Dutch national soil
map at scale 1:50,000 for the northern peatlands.

2. Materials and methods

2.1. Study area

For themap update program, the Dutch peatlandswere divided into
six soil-geographical subareas according to peat landscape type, each of
which ismodeled independently. Here the results are presented for two
of these subareas: the northern till plateau (subarea 1) and the northern
fen peat area (subarea 2) that jointly cover 152,925 ha. Added to the lat-
ter were the deep peat soils of the Frisian part of the northern fen peat
area on request of the Province of Friesland and the Frisian water
board (34,600 ha; these soils were initially not scheduled for updating).
In total the study area comprises 187,525 ha and stretches between
52.35–53.49° North and 5.20–7.19° East (Fig. 1).

The northern till plateau is a Pleistocene glacial till plain dissected by
an extensive brook valley system. The till deposits are covered with ae-
olian sands. In the early Holocene, the brook valleys were filled with
sedge and reed-sedge dominated fen peat. At the same time, raised
peat bogs of Sphagnum peat moss developed on the plateau positions.
The raised bogs were drained, excavated and reclaimed for agriculture
between the early 17th century and mid-20th century. Here dominant
land use is cropland (grain, potato, sugar beet). Land use in the brook
valleys is dominated by intensively managed grassland for dairy farm-
ing. Some small patches of raised bogs still remain in the study area.
These are nature conservation areas. Peat soils (Folic Histosols) are
found in the center of the brook valleys, while peaty soils are found
along the edges (Folic Gleysols Arenic and Folic Gleyic Podzols). The cul-
tivated peat and peaty soils of the plateau are predominantly Folic
Histosols Drainic and Folic Gleyic Podzols, both soils are typically cov-
ered by a 20–30-cm thick sandy Transportic horizon that has been ap-
plied to make the reclaimed soils suitable for cropping. Fibric Histosols
dominate the nature conservation areas on the plateau. Peat layers are
relatively thin and do not typically exceed 1.5 m.

The northern fen peat area lies in the transition zone from the Pleis-
tocene sand landscape of the northeastern and eastern Netherlands, to
the marine clay landscape of central and northern Netherlands. Peat
started to form in the mid-Holocene on top of Pleistocene cover sand
deposits as a result of rising groundwater levels caused by a rising sea
level. By 1000 BC, vast fen peat meadows and raised Sphagnum bogs
were formed. Since that time, claywas deposited on top of the peat dur-
ing a series of marine transgressions. Reclamation of the fen peat area
for habitation and agriculture, including peat excavation, started in the
early Middle Ages. Today, the northern fen area is dominated by inten-
sively managed grassland for dairy farming. The area is dominated by
Folic Histosols with a 20–40-cm thick clayey-peat, peaty-clay or clayey
topsoil, and Folic Gleyic Podzols. The peat layer can be up to 3 m deep.

2.2. Data

2.2.1. Point data
Three sources of point data were used: i) legacy point data obtained

from the Dutch soil information system BIS1, ii) legacy point data from
the 2002–2004 peat soil survey (van Kekem et al., 2005), and iii)
newly acquired point data.

From BIS, 21,220 soil profile descriptions were extracted: 5758 sites
in subarea 1 and 15,462 sites in subarea 2. These can be split in two sets:
profiles described for small-scale (1:10,000) soil surveys (19,712
points) and profiles described for large-scale surveys and other research
projects (1508 points). In addition, legacy point data from the 2004 peat
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Fig. 1. Study area of the map updating exercise. The update is carried out for the subareas ‘Till plateau’ and ‘Fen peat’ subareas. ‘Other peat’ denotes organic soils in other subareas and
‘Not updated’ denotes the deep peat soils that are not part of the update program. The inset shows the location of the study area in the Netherlands.
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survey (van Kekem et al., 2005) were digitized from topographic maps.
This resulted in 5296 data points: 2459 for subarea 1 and for 2837 for
subarea 2. For these points only the soil classification codes could be re-
trieved, which were noted on the topographic maps. Soil profiles were
not recorded at the time of the survey. Minimum and maximum values
for peat thickness and starting depth were derived from the soil classi-
fication codes. Peat thickness as derived from these codes ranged from5
to 215 cm, with a median of 40 cm and a mean of 50 cm. The difference
between maximum and minimum peat thickness at the survey loca-
tions was on average 20 cm. In addition to legacy data, new soil profile
descriptionswere collected. Sampling siteswere selected by spatial cov-
erage sampling (Walvoort et al., 2010) to ensure an even geographic
coverage of the study area. In subarea 1, 322 profile descriptions were
collected (circa 1 per 200 ha) in 2011. In subarea 2, 2045 profile descrip-
tions were collected (circa 1 per 60 ha) in 2012 and 2013. Fig. 2 shows
the spatial distribution of the data points.

2.2.2. Environmental covariate data
A GIS database was prepared that contained 54 environmental data

layers thatwere used as covariates in the predictionmodels. The covariate
layers were constructed from twelve data sources:

• The 1:50,000 national soil map (Steur and Heijink, 1991). Eight cate-
gorical layers were derived from map unit classifications: one layer
indicating peat type, two layers indicating the topsoil lithology, three
layers representing peat thickness, one layer indicating the status
(degraded or not degraded) of peat soils based on the results of the
2002–2004peat survey, and one variable indicating sensitivity to oxida-
tion according to (Finke et al., 1996).
• Groundwater depth maps at 25-m resolution (Berendrecht et al., 2007).
The set contains two layers: one depicting the annual average maxi-
mumdepth of groundwater table below surface, and one the annual av-
erageminimumdepth predicted by theMIPWA groundwatermodel. In
addition to the two continuous layers, seven categorical layers were
generated. Both depth layers were reclassified into layers with five
depth classes. Furthermore, the information on average maximum
andminimumdepthwas used to construct a layerwith 31 soil drainage
classes according to the definitions of the national 1:50,000 ground-
water table map (Steur and Heijink, 1991). This layer was further
simplified to layers with six and three drainage classes, and to layers
representing summer and winter drainage classes.

• National DEMat 25-m resolution.2 Five relative elevation layerswere de-
rived by subtracting the average elevation at each pixel, computed for
search radii of 100, 250, 500, 750, and1000m, from the actual elevation.
These layers capture local relief at different scales. One relative elevation
layer (based on the 750-m search radius)was reclassified into six layers
with different combinations of two, three and four classes to account for
a possible non-linear relation between soil and relative elevation.

• Land cover maps. This set contains five layers depicting land cover in
1900 (50-m resolution), 1940 (25 m), 1960 (25 m), 1970 (25 m),
1980 (25 m), 1990 (25 m) and 2003 (25 m) (Clement and Kooistra,
2003; Knol et al., 2003, 2004; Hazeu, 2005). The 1900 layer distin-
guishes ten classes and was reclassified into layers with two, three
and four classes. The 2003 layer, representing current land cover, distin-
guishes 23 classes and was reclassified into eight layers, each with a
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Fig. 2. Distribution of the data points of the BIS dataset (excluding heavy-clustered points located in small-scale survey areas) (A), peat survey dataset (B), and new dataset (C).
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different combination of classes. The 1940, 1960, 1970, 1980, and 1990
layers were reclassified into layers with two classes: natural land and
cultivated land. Furthermore, the layers from 1900, 1940, 1960, 1970,
1980, 1990 and 2003were combined into amapwith eight reclamation
period classes, i.e. the period when natural landwas reclaimed for agri-
culture. Seven layers were derived from this map, each with a different
combination of reclamation periods.

• Geo-hydrological map at 100-m resolution (Vernes, 2005). Map of
starting depth of the Holocene deposits. Holocene deposits in the
study area are marine clays and peat, and are, therefore, informative
of the thickness of the peat layer.

These covariates are either drivers of processes that affect the oxida-
tion and compaction of the peat layer, or are directly or indirectly
informative of the soil class that is likely to be found currently. Mineral
soils are more likely to be found in areas mapped as peaty soils on the
1:50,000 soil map than in areas in mapped as peat soils. Presence of a
mineral topsoil protects the underlying peat against oxidation. Sphag-
num peat is more resistant against oxidation than sedge or reed peat.
Groundwater table depth (drainage) is a key driver of peat oxidation.
Peat loss will be larger in areas with deeply drained soils than in areas
with soils with a shallow groundwater table. Peat below themean low-
est groundwater table is protected against oxidation (though it might
still be affected by compaction). Peat layers in the relatively high parts
of the landscape will generally be shallower than in the lower parts of
the landscape. In the former, mineral soils are more likely to be found
as a result of peat oxidation than in the latter. In agricultural lands, the
effect of oxidation on the thickness of the peat layer will be larger for
cropland than for grassland, whereas natural landswill hardly be affect-
ed by peat oxidation.

2.3. Outline of the mapping procedure

We update the 1:50,000 soil map of the peatlands through mapping
the key diagnostic soil properties peat layer thickness and peat layer
starting depth. The update procedure has four stages that are outlined
in brief here. The subsequent sections provide detailed descriptions of
each of the stages. In this paper we only present and illustrate themap-
ping procedure for peat thickness. For peat starting depth, a similar pro-
cedure was followed. Fig. 4 gives a schematic overview of the mapping
procedure and Table 1 gives an overview of the point data sources, and
indicates their use in the various modeling stages.
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In the first stage, the legacy soil point data were updated. The legacy
soil profile descriptions were recorded between 1955 and 2010, with
themajority between 1980 and 1990. Given their age, the recorded pro-
filesmay not represent current field conditions. Though this might limit
their use for calibrating a predictionmodel of the current peat thickness,
these data can still be informative about the current thickness. If peat
was not observed in the past, then it is very likely that this is still the
case today since there is no active peat growth anymore. This also
means that the observed thickness in the past can be assumed themax-
imum thickness today. To make most out of the legacy point data, the
peat thickness values were updated and the uncertainty associated to
the updated thickness values was quantified. The updated point data
were used as ‘soft’ data in our prediction models. Note that only peat
thickness values were updated. The starting depth of the peat layer
was assumed not to have changed since the depth was recorded, and
was not updated.

In the second stage, peat thickness values were predicted at the
nodes of a grid with 50-m resolution. For modeling, the (updated) leg-
acy data were used in addition to the newly acquired data. Differences
in uncertainty associated to the peat thickness values were taken into
account in themodel. Fig. 3 shows the frequency distribution of the ob-
served peat thickness values for the legacy and newly acquired data.
Both datasets show that a considerable proportion of the soil profiles
contained no peat (peat thickness of 0 cm), i.e. the data are zero-
inflated. Zero-inflated data can best be modeled by a mixture of
two distributions in a two-step approach (Heilbron, 1994; Fletcher
et al., 2005), which we did here. In the first step, the presence/ab-
sence of peat was modeled by a logistic regression model. In the
second step, the (log-transformed) peat thickness was modeled by
a spatial linear regression model, conditional on the presence of peat.
To obtain a prediction of the unconditional peat thickness, the model
predictions were combined. The same two-step procedure was followed
for the starting depth.

In the third stage, a peat thickness class map was constructed from
the simulated unconditional peat thickness values, and a map of soil
groups was constructed by combining the unconditional peat thickness
values with the unconditional peat starting depth values.

In the fourth stage, the updated soil group map was incorporated
into the 1:50,000 polygon soil map. Updated soil classes according to
the 1:50,000 map legend were obtained by refining the soil group pre-
dictionswith information about (static) soil properties such as peat type
and topsoil lithology that was obtained from the 1:50,000 map.
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Fig. 4. Schematic overview of themapping approach. To obtain simulated values for the peat layer starting depth, a similar approachwas used as for the peat thickness values as indicated
by the dashed arrow. The outputs in bold and underlined type were validated.

318 B. Kempen et al. / Geoderma 241–242 (2015) 313–329

image of Fig.�4


319B. Kempen et al. / Geoderma 241–242 (2015) 313–329
The outputs of the second and third stages were validated with
independent probability sample data. Subareas 1 and 2 were modeled
separately.

2.4. Updating legacy soil profile data

2.4.1. Legacy profile data types
We distinguish three types of legacy point data: i) hard data, ii) in-

terval data and iii) censored data. Hard data are measurements with
negligible error at the time of observation. Interval data comprise field
observations for which only a thickness interval can be derived. The
2002–2004 peat survey contained many interval data points. During
this survey only soil classification codes were indicated on a topograph-
ical field map. For some data points, the peat layer thickness could be
deduced from these codes. For other points, only a thickness interval
could be determined. For censored observations (Knotters et al., 1995)
the peat layer thickness cannot be determined from the soil profile
descriptions: the bottom of the peat layer exceeds the observation
(augering) depth. The observed peat thickness is thus the minimum
thickness at the data point.

The hard data were directly updated with the model presented
below. For each interval data point, 100,000 thickness values were
drawn from a uniform distribution with parameters equal to the
upper and lower boundary of the interval. These simulated values are
possible values of the peat thickness at the time of observation. For
each censored data point, 100,000 values were drawn from a beta(a,b)
distribution. Parameter a was chosen as 2, and parameter b as 5, based
on expert judgment. The simulated values, that take values between 0
and 1, were multiplied by the censored thickness of the data point and
then censored thickness was added. This gave us 100,000 simulated
thickness values at each censored data point. The maximum (uncen-
sored) thickness in the dataset was used as upper bound for the simu-
lated thickness values. All simulated thickness values were updated in
the same way as for hard data, which is described below.

2.4.2. Model definition
The thickness of peat layers in the soil profiles stored in BIS and the

peat survey dataset was updated with the following model:

zti ¼ uti þ vti
uti ¼ ut−1;i � pi if vt−1;i ¼ 0; else ut−1;i

vti ¼ max vt−1;i−ut−1;i � 1−pið Þ;0
� �

if vt−1;iN0; else 0

ð1Þ

with zti is the total peat layer thickness in year t at location i, uti is the
thickness of the peat layer above themean lowest (MLW) groundwater
table in year t, vti is the thickness of the peat layer belowMLW in year t,
and pi is the proportion of the thickness of the peat layer above MLW
remaining after one year at location i. We assumed that i) the part of
the peat layer that is below MLW is not affected by oxidation and ii)
the MLW is kept at a constant level. This model is a refinement of the
model described by Kempen et al. (2012a) that did not distinguish be-
tween peat above and below MLW. Application of the model of
Table 1
Point data sources and their use in the various modeling stages. The plus sign indicates
used, the minus sign not used.

Modeling stage BIS data Peat survey
data

New
data

1:10,000
survey

Other

Updating peat thickness + + + −
Selection/calibration peat presence model − + + +
Peat presence prediction − + + +
Selection/calibration peat thickness model − + − +
Peat thickness prediction + + + +
Kempen et al. (2012a) in subarea 2 resulted in unrealistically large
decreases of the peat thickness.

The model is extended by the following sub-model for pi (Kempen
et al., 2012a):

pi ¼ πi þ ϵi
logit πið Þ ¼ xTi β
E ϵi½ � ¼ 0
var ϵi½ � ¼ σ2πi 1−πið Þ
cov ϵi; ϵ j

h i
¼ 0 for i≠ j

: ð2Þ

This model is a generalized linear model (GLM) (McCullagh and
Nelder, 1989), fittedwith a logit link function and residual variance pro-
portional to π(1− π) (σ2 is the dispersion parameter). The model was
fitted by maximum quasi-likelihood (Wedderburn, 1974). Note that
spatial independence was assumedwhen simulating the peat thickness
at the point observation locations.

2.4.3. Model fitting and application
Kempen et al. (2012a) found no relation between logit(πi) and

environmental covariates x, thus here πi is constant in space. To account

for uncertainty in πi, we used the values of π̂ and σ̂2 as reported by
Kempen et al. (2012a) to simulate values for pi, using a beta(a,b) distribu-
tion. Thebeta probability density function is only positive on [0,1], a useful
property for simulating proportions. The expectation of this distribution is

a/(a+ b), and the variance is (ab)/[(a+ b+1)(a+ b)2]. By choosing π̂i

1−σ̂2
� �

=σ̂2 for a and 1−π̂ið Þ 1−σ̂2
� �

=σ̂2 for b, the expected value

equals p̂i and the variance σ̂2π̂i 1−π̂ið Þ.
For each hard data pointwe simulated 100,000 values for p, whereas

for each interval or censored data point one value for p was simulated
for each of the 100,000 simulated original thickness values. The update
model (Eq. (1)) was applied to each of the 100,000 values for p, yielding
100,000 updated peat thickness values at each legacy data point.
Note that the variation in updated peat thickness for interval and cen-
sored data will be larger than for hard data, due to variation in original
thickness.

The updated valueswere log-transformed, and themean and variance
of these log-transformed updated peat thicknesses were computed for
each legacy data point. The variance of the simulated peat thicknesses re-
flects our uncertainty about the actual peat thickness. This uncertainty
was accounted for in spatial prediction of the peat thickness (see hereaf-
ter). Note that the larger t, the larger the variance of the simulated peat
thicknesses, and the smaller the weight attached to these data in spatial
prediction. This means that older legacy point observations receive less
weight in the prediction model than younger legacy observation points
because we are more uncertain about the former than about the latter.
Similarly, interval and censored data will get a smaller weight than hard
data due to the larger variance of the updated peat thickness.

2.5. Modeling and mapping the thickness of the peat layer

2.5.1. Selection and calibration of a model for presence/absence of peat
The first step in the two-step approach for peat thicknessmapping is

to model peat presence/absence. For model selection and calibration,
the legacy soil profile data with updated peat thicknesses were used
in addition to the newly collected data. The strongly clustered points
located in the areas where small-scale surveys have been carried out
were excluded from the model selection and calibration steps to avoid
bias in the estimated regression coefficients. For each data point, an in-
dicator variable was defined, which takes the value 1 if peat is present,
and 0 when peat is absent. For the legacy soil profile data, a threshold
value of 1 cm for the updated peat thickness was used: if the updated
peat thickness (the average of 100,000 simulated values) in a soil profile
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was less than 1 cm, then the peat indicator value for this soil profile
was 0.

Peat presence/absence was modeled with a GLM with a logit
link function. For model selection, correlated covariates were grouped
(e.g. the land cover covariates and the relative elevation covariates).
From each covariate group, only one covariate was allowed in the
model. Unique covariate combinations were formed with one covariate
from each group. For each combination, the best model was selected
using a step-wise approach on basis of Akaike's Information Criterion
(AIC) (Webster and McBratney, 1989). Finally, from the set of ‘best
models’ the overall best model was selected based on AIC. The signs of
the regression coefficients were checked if these conform to our pedo-
logical knowledge. If this was not the case, then the second overall
best model was selected. The deviance residuals of the model showed
only very weak spatial correlation: in subarea 1 the relative nugget
was very large, whereas in subarea 2 the experimental variogram fluc-
tuated around a horizontal line. We, therefore, decided not to model
the residuals.

2.5.2. Prediction of the probability of peat presence and simulation
of indicators

The calibrated GLMwas then used to predict the probability of peat
presence at the nodes of a 50 × 50m grid. Next, at each grid node 1000
peat indicator values were simulated from a Bernoulli distribution, with
the predicted probability as the ‘probability of observing peat’. The indi-
cators at the grid nodes were simulated independently from each other,
i.e. spatial correlation was not accounted for because for geostatistical
simulation this is not needed when results are not aggregated.

2.5.3. Selection and calibration of a model for conditional peat thickness
The second step in peat thickness mapping is to model the (updated)

thickness of peat conditional on the presence of peat. This means that for
model selection and calibration, only those soil profiles were used where
peat was observed (thickness N 0). The peat thickness data showed skew,
which was removed by transformation to natural logarithms. The spatial
distribution of the log-transformed peat thickness was modeled by a lin-
earmixedmodel (Lark et al., 2006), i.e. the sumof a linear combination of
covariates (linear trend) and a spatially correlated residual. Note that the
peat survey data were not used for model selection and calibration
(Table 1). The interval nature of the data, in combination with the fact
that the data were updated, made the (simulated) peat thickness values
highly uncertain.

Model selection was done as for the peat presence model, assuming
uncorrelated residuals. To account for the uncertainty about the up-
dated peat thickness for the legacy data points, weighted least squares
(WLS) estimationwas usedwithweights equal to the inverse of the var-
iance of the log-transformed peat thickness simulations. The coeffi-
cients of the selected model and the variogram parameters were
estimated by residual maximum likelihood (REML) (Lark et al., 2006).
The uncertainty associated to the (updated) legacy data points was
not accounted for in REML estimation.

2.5.4. Prediction and simulation of conditional peat thickness
The calibrated linear mixed model was used to predict the condi-

tional peat thickness at the nodes of the prediction grid, using all data
points (Table 1). The geostatistical application of the linear mixed
model is referred to as kriging with an external drift. The uncertainty
about the updated peat thickness values in the legacy dataset was
accounted for in kriging by adding the variance of the log-transformed
100,000 simulated peat thickness values (Section 2.4) to the diagonal
of the covariance matrix (Delhomme, 1978; Knotters et al., 1995). The
predicted log-transformed peat thickness and the associated prediction
variance were then used to simulate 1000 values per grid node, as-
suming a normal distribution. These simulated values were then
back-transformed by exponentiation.
2.5.5. Computation of the unconditional peat thickness
For each grid node, 1000 unconditional peat thicknesses were

obtained by element-wise multiplication of the vectors with simu-
lated peat presence indicators and conditional peat thickness values.
From these, the mean, median, 5-percentile and 95-percentile were
computed.

2.6. Mapping peat thickness classes and soil groups

In addition to a continuous peat thickness map, we constructed
a peat thickness class map from the simulations. Three classes were
defined (b5 cm, 5–40 cm, and ≥40 cm) that correspond to peat thick-
ness classes used in the Dutch soil classification system (de Bakker
and Schelling, 1966). Each simulated value was assigned to one of the
classes. Then the class frequency distribution was determined for each
grid node. The thickness class with the largest frequency was used as
the predicted class.

To derive the updated soil groups for a grid node, the simulated un-
conditional peat thickness values were combined with the simulated
unconditional peat starting depth values. This resulted in 1000 simulat-
ed soil groups for each grid node. Here, the following five groups were
considered: i) mineral soil, ii) mineral soil with peat layer starting
deeper than 40 cm below the surface, iii) peaty soil, iv) peat soil with
mineral subsoil starting within 120 cm from the surface, and v) peat
soil with peat layer extending deeper than 120 cm below the surface.
These groups correspond to the classification of the main soil units
according to the 1:50,000 map legend. At each grid node, a soil group
probability distribution was derived from the 1000 simulated soil
groups. From this probability distribution, a soil group was selected
and used to construct the map of updated soil groups. For this purpose
we did not select the soil group with the largest probability. Instead,
we used a hierarchical approach that follows the Dutch soil classifica-
tion system. This approach is schematically represented in Fig. 5.

First, we determined if the soil was to be classified as a peat soil or
non-peat soil (mineral or peaty) by comparing the sum of the probabil-
ities of the two peat soil groups to a probability threshold value. If the
soil was to be classified non-peat soil, then we determined if the soil
was to be classified as a peaty soil or mineral soil by comparing the con-
ditional probability of the occurrence of a mineral soil with a second
threshold value (conditional on the soil being a non-peat soil). The
threshold values were chosen in such a way that these minimized the
sum of the absolute differences between the fractions of the three soil
orders (mineral, peaty, peat) as obtained by leave-one-out cross-
validation predictions at the newly acquired sampling sites and the frac-
tions computed from the observed soil order at these sites. Using
threshold values for classification allowed us to control the areal frac-
tion of the soil orders on the updated map, and ensure that these frac-
tions gave a realistic representation of the true areal fractions of the
soil orders in the mapping area, which was important to us. For this,
we assumed that the newly acquireddata gave a realistic representation
of the actual fractions in the mapping area, which is not unreasonable
given the spatial coverage sampling design used to collect these data.
Once it was determined if the mapped soil was to classified as a peat
soil, peaty soil or mineral soil, the classification was continued as
depicted in Fig. 5. The hierarchical classification procedure was applied
to each grid node-specific soil group probability distribution, resulting
in an updated map of soil groups.

For the purpose of validation, we constructed a map distinguishing
three major soil orders from the map with five soil groups. The peat
thickness and peat thickness class maps were validated as well.

2.7. Updating the 1:50,000 soil map

The 50-m resolution rastermap of thefive soil groupswas converted
to polygon format by constructing a smoothed contour map from the
soil group boundaries. Polygons smaller than 2 ha were eliminated by



Fig. 5. Procedure for selecting the mapped soil group at a prediction node from the predicted soil group probability distribution. The ‘P’ indicates the probability. The numeric subscripts
indicated the soil group [11)mineral soilwithout peat layer, 12)mineral soil with peat layer starting deeper than 40 cmbelow the surface, 20) peaty soil, 31) peat soil withmineral subsoil
starting within 120 cm from the surface, 32) peat soil with peat layer extending deeper than 120 cm below the surface] or soil order [10) mineral soil, 20) peaty soil, 30) peat soil].
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merging these with neighboring polygons with the longest shared
boundary. Next, the soil group polygon map was combined with the
1:50,000 soil map to identifywhich of the current polygon classification
codes need to be updated.

Updating of the soil codes of the 1:50,000 soil map on basis of the
updated soil group map was complicated by the fact that there was no
one-to-one relationship between these. For example, a former peaty
soil with a mineral, podzolic subsoil that degraded to a mineral soil ac-
cording to the predicted soil group, could have become a sandy podzol
or a loamy podzol (whether it is sandy or loamy cannot be inferred for
peaty soils from the 1:50,000 soil code). Therefore, a translation table
was constructed that specifies for each combination of original soil
code (n=51) andupdatedmajor soil group (n=5)up to eight possible
updated soil codes in order of likeliness as determined by a soil survey-
or. Which of the candidate soil codes is finally chosen to update the
polygon, depends on the current (not-updated) polygon soil codes
that are found within a 50-m radius. If this search results in a selection
of two or more soil codes, then the code with the largest likelihood
was selected from the translation table. If the search does not result in
a match with one of the candidate codes, then the code with the largest
likelihoodwas selected. This selectionwas checked by the soil surveyor.
In a final generalization step polygons smaller than 3.2 ha were elimi-
nated. These polygons were merged with neighboring polygons based
on matching soil group.
2.8. Validation

The peat thickness and peat thickness class maps were validated
with independent probability sample data. Validation datawere collect-
ed at 89 locations in subarea 1 and at 150 locations in subarea 2. Sam-
pling locations were selected with a stratified two-stage random
sampling design. The stratification variable is the predicted peat thick-
ness. For subarea 1 four thickness class strata were defined, in subarea
2 five. Sampling locations were allocated to the strata proportional to
their areas. In thefirst stage, a number of 50-m grid cells were randomly
selected within each stratum. In the second stage, five sampling loca-
tions are randomly selected in each selected grid cell. Sampling loca-
tions where permission was denied or proved otherwise impossible to
sample were replaced with randomly selected locations from a reserve
list. Fieldwork took place in 2012 and 2013. At each sampling location,
the soil profile was described and classified from an auger bore observa-
tion. From these, the average peat thickness and dominant soil order
(peat, peaty, mineral) were determined from the five individual mea-
surements. If there was no dominant soil order (e.g. two observations
of peat soil, two of peaty soil and one ofmineral soil), then onewas cho-
sen on basis of expert judgment.

We consider three quality measures for the peat thickness class and
peat soil class maps: overall purity, map unit purity (user's accuracy)
and class representation (producer's accuracy) (Brus et al., 2011).

image of Fig.�5
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Overall purity is defined as the proportion of themapped area in which
the predicted soil type, which is the soil type as depicted on the map,
equals the true soil type. In other words, it is the areal proportion cor-
rectly classified. The map unit purity is the proportion of the map unit
correctly classified. The class representation for class k is the proportion
of the area where in reality class k occurs that is also mapped as class k.
For the peat thicknessmap,we computed themean error (bias), and the
mean absolute and root mean squared error (Brus et al., 2011).

3. Results

3.1. Updating legacy soil profile data

Fig. 6 shows the frequency distribution of 100,000 simulated thick-
ness values for two locations; one sampled in 1982 (left) and one in
2007 (right). At both sites the peat thickness was 100 cm at the time
of observation. The simulated values represent the peat thickness in
2012. The frequency distributions reflect the uncertainty about the
yearly decrease coefficient pi (Eq. (2)), and thus about the actual peat
thickness in 2012. The shape of the frequency distributions shows that
the uncertainty about the actual peat thickness at a sampling site in-
creases with age of the soil profile description. The average of the simu-
lations for the 1982 location is 65 cm and for the 2007 location 92 cm.
Fig. 7. shows a scatter-plot of the updated versus the original (observed)
peat thickness for the interval data points (left) and the hard data points
(right) of subarea 1. The figure shows that the absolute decrease of the
peat thickness becomes larger when the original thickness increases,
and that the effect of age on the predicted actual thickness becomes
smaller when the original thickness becomes smaller. This implies
that the absolute annual decrease becomes smaller in time and, because
a proportional model was used, the updated thickness approaches zero
asymptotically. The former might be plausible since the most resistant
parts of the peat will tend to accumulate. The latter is less realistic
since the peat layer will eventually completely disappear, as evidenced
by our field observations. The figure also shows that there can be con-
siderable variation in updated thickness for a given original thickness,
depending on the part of the peat layer that is initially below groundwa-
ter level.

3.2. Prediction models

Table 2 shows the selected regression models for the presence/
absence of peat and the peat thickness for both subareas. The most
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Fig. 6. Two examples of the frequency distribution of 100,000 simulated peat thickness at tw
thickness was 100 cm at both sites. The mean lowest groundwater table was deeper than 100
important covariate was the peat thickness in three classes as derived
from the existing (not updated) soil map. All regression models include
a predictor associated to the groundwater level, historic land use, recla-
mation age, and relative elevation. In addition, topsoil lithology, current
land use, oxidation risk, peat type and the thickness of the Holocene de-
posits were selected in some of the models. The linear regression
models explained 34% of the variance of the conditional peat thickness
in subarea 1, and 59% in subarea 2. The McFadden-R2 (Menard, 2000)
of the GLM for peat presence/absence was 31% for subarea 1 and 19%
for subarea 2. The spatial dependence coefficient [partial sill/sill-ratio]
(Lark and Cullis, 2004) for subarea 1 was 0.50, and for subarea 2 0.54,
both indicating a moderate degree of spatial correlation in peat thick-
ness. The estimated range parameter was 445 m for subarea 1 and
4767 m for subarea 2. The large difference in the range parameter
might be explained by the fragmented occurrence of peat in subarea
1, whereas in subarea 2 peat occurs in larger continuous areas.

3.3. Updated soil maps

Fig. 8 shows maps constructed from the P5, P50 (median) and P95
quantiles of the 1000 simulated peat thickness values, illustrating the
uncertainty associated to the predicted peat layer thickness. The aver-
age predicted peat thickness for the study area is 65 cm, as computed
from the means of the 1000 simulated values. The P5 and P95 maps
show that the uncertainty is relatively large. The average of the P5
map is 16.4 cm, that of the P95 map 146.3 cm.

Amap depicting the three soil orders is shown in Fig. 9. According to
this map, mineral soils now cover 26.9% of the area, peaty soils 27.7%,
and peat soils 45.3%. Compared to the 1:50,000 national soil map,
there is a considerable shift from peat soils to peaty soils and peaty
soils to mineral soils. According to this map, peaty soils covered 37.4%
of the study area and peat soils 62.6%. For 41% of the mapping area the
updated and originally mapped soil orders differ.

In subarea 1, the thickest peat soils are found in the centers of the
brook valleys. The patches of peat on the till plateau have now largely
disappeared. For 45% of the area the updated soil order differs from
the soil order depicted on the 1:50,000 map. Approximately 55% of
the area originally mapped as peaty soils is now mapped as mineral
soil, and 28% of the area originally mapped as peat soils is nowmapped
as peaty soil.Within the peat soil order there is a dramatic shift from the
deep peat soil group (peat layer extends below 120 cm) to the shallow
peat soil group (peat layer ends within 120 cm below the soil surface).
Roughly 95% of the original deep peat soils are nowmapped as shallow
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o sites in 2012. The sites were sampled in 1982 (left) and 2007 (right). The initial peat
cm at both sites.
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Fig. 7. Original versus updated peat thickness for uncertain (interval) (A) and hard (B) data on the original peat thickness, grouped by year of observation.
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peat soils. Peat soils are predicted to cover 30% of the mapping area,
peaty soils 37% and mineral soils 33%.

In subarea 2, predicted changes are somewhat less extensive. For
38% of the mapping area the updated and originally mapped soil order
differ. About 63% of the area originally mapped as peaty soils is now
mapped as mineral soil, and 19% of the area originally mapped as peat
soils is now mapped as peaty soil. Because of these shifts, the area
with mapped peaty soils is almost equal for the original and updated
map. About 10% of the area originally mapped as peat soil is now
mapped as mineral soil. A peat layer is predicted to be present for the
majority of these mineral soils (68%). However, because this layer be-
gins at a depth greater than 40 cm below the soil surface, the soil clas-
sifies as a mineral soil. Peat soils are predicted to cover 54% of the
mapping area, peaty soils 23%, andmineral soils 23%. Peat soils original-
ly covered 75%. Subarea 2 showed a less dramatic shift from deep peat
soils to shallow peat soils than subarea 1. For 78% of the area originally
mapped as deep peat soils, deep peat soils are predicted. The difference
with subarea 1 can be explained by the fact that the peat layers in sub-
area 2 are in general thicker than in subarea 1. In subarea 2, with its fen
peat plains, the peat layer can easily reach a thickness of more than 3m,
while in subarea 1,where thedeep peat soils aremainly restricted to the
brook valley centers, the peat layer is often less than 2 m thick. Here,
degradation of the peat layer will have a stronger effect on soil classifi-
cation than in subarea 2.

Fig. 10 shows two details of the updated 1:50,000 soil map and the
corresponding details of the original 1:50,000 map. Soil codes contain-
ing a ‘V’ are peat soils, ‘W’ peaty soils, and ‘Z’ or ‘H’ mineral soils. The
top two maps show not only shifts from peat soils to peaty soils (e.g.
aVz to vWz) and from peat soils to mineral soils (e.g. zWp to cHn23),
but also within the peat soil class. The ‘aVc’ class (peat layer extending
deeper than 120 cm below surface) is remapped as ‘aVz’ (mineral sub-
soil starts within 120 cm below surface). The bottom two maps show
more extensive changes within the peat soil class (xXc to xXz) and larg-
er shifts from peaty soils to mineral soils. Thesemaps also show the soil
Table 2
Overview of the selected predictors for each model in subarea 1 and 2.

Model Covariatesa

Subarea 1
Peat presence/absence PEATTHK3 + GTS
Conditional peat thickness PEATTHK3 + GT3

Subarea 2
Peat presence/absence PEATTHK3 + MH
Conditional peat thickness PEATTHK3 + MH

a PEATTHK3: peat thickness (3 classes); GTS3: summer groundwater table level (3 classes); GT
RECLAM3: land reclamation age (3 classes); LC1970/LC1990: historic land cover in 1970/1990 (2 c
750/1000: relative elevation within search radii of 100/750/1000 m; PEATTYP: peat type (2 classe
surveyor expert knowledge used to determine the type of mineral soil:
a peaty soil with a sandy subsoil without podzol profile (vWz) becomes
aMollic Gleysol (pZg23), whereas a peaty soil with a sandy subsoil with
podzol profile becomes a Haplic Podzol (Hn21) or a Haplic Podzol
Plaggic (cHn23), depending on the type of podzol found in the sur-
rounding polygons. The figure also shows that themap unit boundaries
betweenmineral and organic soils were kept intact, i.e. themap update
took place within the original organic soil map units. We did not remap
the extent of organic soils.

3.4. Validation

Table 3 presents the results of the validation with independent
probability sample data. For both subareas, the models gave unbiased
predictions of the peat thickness. The ME values did not differ signifi-
cantly from zero at the 95% level (p = 0.350 for subarea 1 and p =
0.150 for subarea 2). For subarea 1, theMAEwas 23 cm, and for subarea
2, 31 cm. The RMSEwas 29 cm for subarea 1 and 48 cm for subarea 2. For
both subareas, the error distributions were highly skewed, which
inflates themeans.We, therefore, also report themedian of the squared
errors, which is a more robust statistic of the ‘average’ error in case of
highly skewed error distributions. Themedianswere remarkably small-
er than the means. The RMedianSE was 12.6 cm for subarea 1, and
18.6 cm for subarea 2. To put the mean and median errors in perspec-
tive, the mean of the predicted peat thickness values for subarea 1 is
34.3 cm, and for subarea 2, 82.4 cm. For subarea 1, the correlation coef-
ficient was 0.71, and for subarea 2, 0.80. This corresponds to an R2-value
of 0.50 for subarea 1, and 0.65 for subarea 2.

For subarea 1, the overall purity of the peat thickness class map was
64.2%, and that of the soil order map 66.3%. For subarea 2, the overall
purity of the peat thickness map was 72.2%. When incorporating infor-
mation about the starting depth of the peat layer to derive the soil or-
ders, the purity dropped to 66.3%. Table 4 shows the error matrices
with the map unit purities (MUPs) and class representations (CRs)
3 + LC1990 + RECLAM3 + REL1000 + LITH2 + COV2 + OXRISK
+ LC1970 + RECLAM3 + REL1000

W5 + LC1970 + RECLAM3 + REL100 + PEATTYP
W5 + LC1990 + RECLAM3 + REL750 + LITH4 + PEATTYPE + OXRISK + THICKHOL

3: groundwater table level (3 classes); MHW5:mean highest groundwater table (5 classes);
lasses); COV2: current land cover (2 classes); LITH2/4: topsoil lithology (2/4 classes), REL100/
s); OXRISK: peat oxidation risk (2 classes); THICKHOL: thickness of the Holocene deposits.
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Fig. 8.Maps depicting the 5% (A), 50% (B) and 95% (C)quantiles of the 1000 simulatedpeat
thickness values.
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that are computed from the marginals. (Note that we can derive the
MUPs and CRs directly from the matrices because sampling locations
were allocated to the sampling strata proportional the strata areas. If
this would not have been the case, then more sophisticated estimators
should be used, see for example Kempen et al. (2009).) The statistics
in this table shows that for subarea 1 theMUPs and CRsweremostly be-
tween 60 and 70%. There are no peat thickness classes and soil orders
that are either very well or very poorly predicted or represented. Subar-
ea 2 showed larger differences between the peat thickness classes and
between the soil orders. The peat soil order has the largest MUP and
CR. The mineral soils are mainly confused with peaty soils and peaty
soils mainly with peat soils. The 0–5-cm peat thickness class is poorly
mappedwith aMUP of 33% (though it should be noted that this statistic
is based on only 6 validation points). Furthermore, the 0–5 cm class is
not well represented by the updated map. For only 11% of the area
where in reality peat layers less than 5 cm thick are found, these were
mapped.

The validation sample also provided an estimate of the true areal
fractions of the peat thickness and soil orders. In subarea 1 there now
is an almost equal distribution of the three soil orders,which iswell rep-
resented by the updated soil order map (Table 4). Peaty and peat soils
cover an almost similar extent. For subarea 2, the validation sample
showed that organic soils still cover 81% of the area, with peat soils cov-
ering 54% of the total area. Also for this area there is a fair agreement be-
tween the estimated true areal fractions of the three soil orders and the
mapped areal fractions. The extent of mineral soils is slightly too large
and the extent of peat soils slightly too small, although we do not
think that these differences are significant at the 0.05-level. The ob-
served peat thickness class data shows that for 87% of the area a peat
layer of at least 5 cm is present, indicating the presence of peat in
some mineral soil profiles.

4. Discussion

4.1. Methodology

In this paper we presented a pedometric mapping approach that
was developed to update the national soil map of the Netherlands at
scale 1:50,000 for the peatlands. Though quantitative methods for soil
inventories were introduced in the Netherlands in the mid-1980s and
1990s, operational use of DSMhas so far been limited to regional studies
and for mapping quantitative properties (e.g. Brus et al., 2002; Knotters
et al., 2007). This was the first time in the Netherlands that digital soil
mapping was made operational in a government-funded (nationwide)
soil survey program to replace conventional survey. (Although it should
be mentioned that similar techniques were used to map groundwater
dynamics for 1.8 million ha of sandy soils in the eastern and southern
part of the Netherlands (Finke et al., 2004).) Themappingmethodology
was developed and applied for 187,000 ha of peatlands in the north of
the Netherlands, and is currently being applied to update an additional
213,000 ha. The map update is expected to be completed early 2015.

There is an increasing interest recently in the use of pedometric
methods for generating, disaggregating or updating soil class maps
(e.g. Yang et al., 2011; Häring et al., 2012; Subburayalu and Slater,
2013; Subburayalu et al., 2014; Odgers et al., 2014; Nauman and
Thompson, 2014; Adhikari et al., 2014; van Zijl et al., 2014; Pahlavan
Rad et al., 2014). Random forests and (boosted) classification trees are
currently the most popular methods to predict the spatial distribution
of soil classes from environmental covariates and soil profile data.
There are three methodological characteristics that set our study apart
from what has recently been done. First, instead of direct prediction of
soil classes, we predicted soil class indirectly throughmapping of quan-
titative, diagnostic soil properties. Mapping quantitative properties is
more straightforward than categorical properties, especially when one
wants to take the spatial correlation structure into account. Such ap-
proach is possible here since i) only two properties need to be consid-
ered, and ii) we do not aim to increase the detail of the original map,
asmany of the recent studies aim for, so that thismap can be used to de-
rive the detailed soil class from the soil groups predicted by the model
by using information on (static) properties obtained from themap. Sec-
ond, contrary to most studies, an updated polygon map was one of the
outputs, which was requested by the client. This implied that the raster
maps had to be converted to polygon format and integrated in the
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1:50,000map, which appeared not to be a trivial task. An automatedGIS
workflow was designed for this purpose. The workflow assigns
1:50,000 legend codes to the updated polygons based on soil surveyor
expert knowledge and spatial context information. Third, legacy point
data from different sources and quality are combined with newly ac-
quired data, and that the differences in uncertainty associated to these
data sources are accounted for by the prediction model. The latter is
more easily accomplished when modeling and mapping quantitative
properties.

The two-step simulation approach presented here is a straightfor-
ward way to deal with zero-inflated data and allows for a full quantifi-
cation of uncertainty. Gastaldi et al. (2012) used a similar two-step
approach to map the occurrence and thickness of soil horizons within
profiles. However, unlike these authors we took a simulation approach
in order to fully quantify the uncertainty associated to the predicted
peat thickness values and the updated soil groups derived from these.
A two step approach has been used in the past to model occurrence
and intensity of rainfall in a GLM framework. Coe and Stern (1982)
model rainfall occurrence with a GLM with a logit link-function and
the conditional intensity as a Gamma-distributed variable with log-
link as an alternative to theGaussian linearmodelwe used here. Though
Coe and Stern (1982) do not model rainfall occurrence and intensity
spatially, their approach isworthy of further research. If a Gammadistri-
bution is used, then attention should be paid to the distribution and var-
iance of the model residuals if kriging interpolation of these is
considered.

4.2. Legacy soil point data

Integration of legacy soil point data in the prediction frameworkwas
one of themain challenges thatwe facedwhen developing themethod-
ology. First, there were different sorts of data: hard, interval and cen-
sored data. For the latter two, the exact peat thickness values at the
time of observation are unknown. For both data types, we choose a sim-
ulation approach to generate possible thickness values. Second, the
legacy point data are subject to change and do not represent current
field conditions. Hence we chose to update the legacy point data before
using these in our prediction model. Calibration of the update model
(Eq. (1)) proved to be difficult. Data from 95 sampling locations, that
were revisited in 2007, were available for this purpose. After screening,
only 44 data points remained (Kempen et al., 2012a). With so few
points we were unable to establish relationships with factors that we
would expect to affect the oxidation rate such as land cover and land
use history. Furthermore, the fact that many sampling locations were
strongly disturbed by human activities during the period between the
original and new observation, and the inaccurate georeferencing of
the original sampling location added to the difficulties we had with cal-
ibrating the updating model.

We went to considerable length inmaking the legacy soil point data
useful for this mapping effort. A relevant issue that we did not address
but is worth further exploring is the added value of using legacy soil
point data for mapping the peat thickness: does use of these data in ad-
dition to new data improve mapping accuracy? This will likely depend
on the number of newly acquired observations. In subarea 1 only 300
new observations were collected. Here we would expect a positive ef-
fect of using legacy point data on map accuracy. In subarea 2 over
2000 new observations were collected with an even geographic cover-
age. In this case the effect of adding extra points (with a relative large
uncertainty about peat layer thickness) on map accuracy is likely to be
very limited.

4.3. Updated soil maps

The overall purity of the soil ordermapwas about 66% for both areas
(Table 3). For subarea 1, this is a considerable improvement compared
to the overall of the original 1:50,000 map, which was 54.0% on the
soil order level. For subarea 2, however, the improvement is marginal
(3.3%) and not statistically significant. The overall purity of the original
1:50,000 map for this area was 62.9% on the soil order level. There are
several reasons we can think of to explain this.
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Fig. 10. Fragments of the original 1:50,000 soil map (A1, B1) and corresponding fragments of the updated 1:50,000 soil map (A2, B2).
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First, the peat layers in subarea 2 are relatively thick, especiallywhen
compared to subarea 1. Here, even a substantial decrease in peat layer
thickness does not always result in a change in soil class. This might ex-
plain the relatively large purity of the 1:50,000 map. In subarea 1, peat
layers rarely exceed a thickness of 120 cm so here changes in thickness
will have a more pronounced effect on soil classification. In other areas
that still require updating, such as the cultivated peatlands of theNorth-
east, changes in soil class are known to be more extensive (van Kekem
et al., 2005; Kempen et al., 2012b). So in these areas we expect that a
Table 3
Validation results for subareas 1 and2.ME is themean error,MAE themean absolute error,
MedAE the median absolute error, RMSE the root mean square error, RMedSE the root
median square error. Values between brackets are the estimated standard errors.

Error measure Subarea 1 Subarea 2

Peat thickness (cm)
ME −1.09 (2.82) 3.96 (3.96)
MAE 19.6 (1.95) 30.9 (2.95)
RMSE 28.8 47.8
RMedSE 12.6 18.6
Correlation coefficient/R2 0.71/0.50 0.81/0.65

Peat thickness class
Overall purity (%) 64.2 (5.2) 72.2 (3.3)

Soil order
Overall purity (%) 66.3 (5.1) 66.3 (3.6)
map update results in a larger gain in accuracy then for subareas 1
and 2.

Second, the predictionmodel had difficulties in predicting the occur-
rence of mineral and peaty soils as evidenced by their class representa-
tions and map unit purities, which were about 43%, though the
predicted areal fractions are in the correct order of magnitude when
compared to the validation sample data (Table 4). A peaty soil is pre-
dicted at 43% of the locationswhere amineral soilwas observed. The oc-
currence of mineral soils did not show strong correlation with the
covariates, as evidenced by the McFadden-R2 of the GLM, despite
using a large set of good-quality point data and covariates. This can be
partly explained by the strong (and sometimes erratic) anthropogenic
effects on the peat thickness that we are unable to capture with our co-
variates. The Dutch peatlands are intensively used and managed that
causes a strong short-distance variation in the thickness of the peat
layer. This was evidenced by the validation sample data, which showed
large variations in peat thicknesswithin the50×50mvalidation blocks.
At 31% of the locations where a peaty soil was found a peat soil is pre-
dicted. These results point to an over-prediction of peat thickness at lo-
cationswheremineral and peaty soils are found, despite that on average
thepredicted peat thickness is unbiased. At locationswere amineral soil
was found the predicted peat thickness is on average 20 cm thicker than
the observed thickness. For peaty soils this is 18 cm. Despite soil order-
specific bias in peat thickness, the validation results of the peat thickness
maps are fairly good, and are similar to the results found byKempen et al.
(2012c). There is a good correspondence between observed and predict-
ed thicknesses as shown by the correlation coefficients.
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Table 4
Sample error matrices showing the counts of predicted versus observed peat thickness classes and soil orders in the validation sample. The rows represent the mapped classes and

orders, the columns the observed. ‘P’ indicates peat soils, ‘Py’ peaty soils, ‘M’ mineral soils, ‘MUP’ map unit purity, ‘CR’ class representation, f̂ the estimated true areal fraction, and fmap

is the predicted area fraction.

Peat thickness class Soil order

Subarea 1 Subarea 1

0–5 cm 5–40 cm N40 cm Total MUP M Py P Total MUP

0–5 cm 14 8 3 25 0.56 M 13 6 2 27 0.62
5–40 cm 6 20 9 35 0.57 Py 8 21 8 34 0.57
N40 cm 2 4 23 28 0.79 P 2 4 25 28 0.81
Total 22 32 35 89 Total 23 31 35 89
CR 0.64 0.63 0.66 CR 0.57 0.68 0.71

f̂ 0.31 0.34 0.35 f̂ 0.33 0.32 0.35

fmap 0.39 0.35 0.27 fmap 0.33 0.37 0.30

Subarea 2 Subarea 2

0–5 cm 5–40 cm N40 cm Total MUP M Py P Total MUP

0–5 cm 2 3 1 6 0.33 M 12 9 6 27 0.44
5–40 cm 16 21 8 45 0.47 Py 12 15 9 36 0.42
N40 cm 1 13 85 99 0.86 P 4 11 72 87 0.83
Total 19 37 94 150 Total 28 35 87 150
CR 0.11 0.57 0.90 CR 0.43 0.43 0.83

f̂ 0.13 0.24 0.63 f̂ 0.19 0.23 0.59

fmap 0.06 0.33 0.62 fmap 0.23 0.23 0.54
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4.4. Implications

In contrary to conventional mapping, multiple outputs are generat-
ed here (Fig. 4), of which the updated 1:50,000 soil class map is only
one. With this collection of maps, we hope that the variety of wishes
of the soil data user community is better served than with a single soil
map. In addition to the updated 1:50,000 map and the map with the
soil orders (that was validated), there are maps with the soil order
and soil group probabilities that give an indication of the uncertainty as-
sociated predictions. Perhaps more valuable for soil data users than the
soil class map, is the map of predicted peat thickness values and their
associated uncertainties (Fig. 8). This map might help, for example, to
improve estimates of soil carbon stocks that have to be reported on
yearly basis to the United Nations Framework Convention on Climate
Change (de Groot et al., 2005), to better identify areas where protective
measures must be taken to decrease the rate of soil subsidence as a re-
sult of peat oxidation (Jansen et al., 2010), or to better quantify soil-
related greenhouse gas emissions (de Vries et al., 2009). Until now,
the 1:50,000 soil map is used for these purposes.

In the course of the map update program, the need for a national
network for monitoring the peat thickness became more and more
apparent. At thismoment there is very little (spatially explicit) data avail-
able on temporal change of the thickness of the peat layers in the
Netherlands. This makes it very challenging to estimate peat oxidation
rates and model the annual decrease of peat layer thickness. Now we
have used a simple model (Eq. (1)) for this purpose that only takes the
effect of groundwater table into account. We think monitoring data will
allow a better calibration of this model. It is expected that the peat layers
will continue to degrade in the (near) future in large parts of the country.
Peat oxidation rates are estimated to be up to 1 cm year−1 (van den
Akker et al., 2008; Hoogland et al., 2012). So within a decade or so, the
maps will again be outdated. The update program invests much effort
in field data collection. It is expected that by the end of the program
over 5000 new soil profile descriptions are collected that will provide a
valuable insight in the current status of the soils of the Dutch peatlands.
The value and usability of these data would be greatly increased if
these could be updated at regular intervals (e.g. every 5 years) with a re-
liable model calibrated with the data from the soil monitoring network.
The updated field data can then be used to generate updated peat thick-
ness and soil class maps with the methodology that is now in place.
Operationalizing DSM for soil survey in the Netherlands does not
only influence the way soil maps are generated. It also has implications
for the Dutch soil information system BIS (Kempen, 2011). BIS is now a
system that is designed to store a limited number ofmaps, currently the
1:50,000 and 1:250,000 national soil class maps and the soil point data.
Its functionality should be expanded to system that not only stores a
multitude of maps in both polygon and raster format at different scales
and resolutions, but also DSM toolboxes with prediction models that
can be run to generate maps on-demand according to user-defined
specifications (Heuvelink et al., 2010).

5. Conclusions

Digital soil mapping was made operational for nationwide updating
of the Dutch 1:50,000 soil map for the peatlands. Soil classes were
updated through updating of diagnostic, quantitative soil properties
that are subject to change. The updated map was integrated in the
1:50,000 soil map. The DSM methodology allows the combined use of
both legacy and newly acquired data while accounting for differences
in uncertainty, and can deal with zero-inflated data through a two-
step simulation approach. The method allows full quantification of
the uncertainty associated to the predicted peat thickness values
and soil groups. Validation results were promising and suggest
that the method can be applied to update the map for the remaining
parts of the peatlands.

In order to increase the value and usability of the point data and soil
maps generated in the mapping program, installation of a soil monitor-
ing network in the peatlands is recommended. The functionality of the
Dutch soil information system BIS should be extended to accommodate
not only a new-generation of soil maps generated with DSM, but also
new possibilities that DSM offers such as on-demand generation of
soilmaps according to user-specific needs. The added value of using leg-
acy point data in addition to newly acquired data was not assessed and
merits further exploration.
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