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Detailed knowledge on the spatial distribution of soils is crucial for environmental monitoring, management,
and modeling. However soil maps with a finite number of discrete soil map units are often the only available
information about soils. Depending on the map scale or the detailing of the map legend this information
could be too imprecise. We present a method for the spatial disaggregation of map units, namely the refine-
ment of complex soil map units in which two or more soil types are aggregated. Our aim is to draw new
boundaries inside the map polygons to represent a single soil type and no longer a mixture of several soil
types. The basic idea for our method is the functional relationship between soil types and topographic posi-
tion as formulated in the concept of the catena. We use a comprehensive soil profile database and topograph-
ic attributes derived from a 10 m digital elevation model as input data for the classification of soil types with
random forest models. We grouped all complex map units which have the same combination of soil types.
Each group of map units is modeled separately. For prediction of the soil types we stratified the soil map
into these groups and apply a specific random forest model only to the associated map units. In order to
get reliable results we define a threshold for the predicted probabilities at 0.7 to assign a specific soil type.
In areas where the probability is below 0.7 for every possible soil type we assign a new class “indifferent” be-
cause the model only makes unspecific classification there. Our results show a significant spatial refinement
of the original soil polygons. Validation of our predictions was estimated on 1812 independent soil profiles
which were collected subsequent to prediction in the field. Field validation gave an overall accuracy of
70%. Map units, in which shallow soils were grouped together with deep soils could be separated best. Also
histosols could be predicted successful. Highest error rate were found in map units, in which Gleysoils
were grouped together with deep soils or Anthrosols. To check for validity of our results we open the black
box random forest model by calculating the variable importance for each predictor variable and plotting re-
sponse surfaces. We found good confirmations of our hypotheses, that topography has a significant influence
on the spatial arrangement of soil types and that these relationships can be used for disaggregation.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Knowledge on the spatial distribution of soils and soil attributes is
crucial for many tasks in environmental management, monitoring,
and modeling. In forestry, for instance, high-resolution spatial infor-
mation on soils is required in order to conduct sustainable manage-
ment of forests which concerns the site-specific environmental
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conditions in relation to species-specific requirements (e.g. Falk and
Mellert, 2011; Thwaites and Slater, 2000). Up to now, soil maps
representing categorical soil units in finite number of map entities
were the most common source of spatial soil information in environ-
mental authorities (Hartemink et al., 2010). In order to allot soil prop-
erties to the soil map, it is common to assign several representative
soil profile data to the different map units (Ad-hoc-AG Boden, 2005;
Legros, 2006; Soil Atlas of Europe, 2005). Soil properties can then be
derived from soil polygon maps by calculating area-weighted or
non-weighted averages across the different soil profiles in each map
unit.

Discretizing soils into several soil units is a challenge for the map-
per, since the spatial distribution of soils and their associated proper-
ties can change significantly within short distances and due to the
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continuous nature of soil (Heuvelink and Webster, 2001; Webster
and Becket, 1968). In nature soils do not occur as discrete bodies
with sharp boundaries (Odgers et al., 2011a). Therefore, mapping
soils as categorical map units can be criticized from an ontological
point of view because it contradicts this situation (e.g. Burrough and
Frank, 1995). Nevertheless, it has been proven to be practical and effec-
tive, because it allows for structuring our knowledge by classification
(Legros, 2006; Webster and Becket, 1968). A common approach in soil
mapping is the aggregation of several soil typeswith different soil prop-
erties into one single complex soil map unit depending on the specific
mapping scale on the one hand and the small scale heterogeneity of
soils across the landscape on the other (Ad-hoc-AG Boden, 2005; IUSS
Working Group WRB, 2010; Soil Atlas of Europe, 2005).

The aim of this study is to present an approach for disaggregating
complex soil map units. Even though the construction of complex
map units is comprehensible from a mapper's point of view, it poses
a question regarding site-specific forest management or land evalua-
tion where aggregated soil map units may cause problems. To assign
soil physical or soil chemical properties to map units, usually several
representative soil profiles have to be selected from an existing soil
data base or by analyzing soil material in the laboratory obtained
from a soil pit. If there are different soil types combined in one com-
plex map unit, it may cause unrealistic results when calculating areal
weighted or non-weighted means. As an example consider following
map unit (in which the originally German soil types were translated
into the international WRB system):

Soil complex with small scale variation of Stagnosols and Leptosols.
Very to extremely blocky-stony, sandy-loamy periglacial detritus of
amphibolites, diorites, and gabbros.

Stagnosols are characterized by periodically stagnating surface
water leading to mottled color pattern or bleaching due to anaerobic
conditions. They develop on a wide variety of unconsolidated mate-
rials and can be found in flat or gently sloping terrain positions
(IUSS Working Group WRB, 2007). In contrast, Leptosols are very
shallow soils and extremely gravelly and/or stony. They can be
found on exposed landscape positions with strongly dissected topog-
raphy (IUSS Working Group WRB, 2007). Clearly, the properties of
those two soil types are very different, e.g. with respect to their suit-
ability for planting tree species or to their vulnerability regarding
windfall. A typical Stagnosol belonging to this map unit has an avail-
able water capacity (AWC) of 167 mm/m2, an impermeable layer at a
depth of 35 cm and a fraction of coarse fragments of 21%. In contrast,
a typical Leptosol in the same map unit has an AWC of 45 mm/m2, no
impermeable layer and a fraction of coarse fragments of 76%. Clearly
this causes problems in calculating the mean values for these attri-
butes from e.g. ten Stagnosols and seven Leptosols, as the resulting
calculated mean will express neither the characteristic properties of
Stagnosols nor Leptosols correctly.

Scale issues in soil science either with respect to transforming soil
information to finer scales (downscaling, disaggregation) or to coars-
er scales (upscaling, aggregation) have been addressed in literature
(Carre et al., 2008; Heuvelink and Pebesma, 1999; Odgers et al.,
2011a, 2011b; Panagos et al., 2011). According to Cheng (2008),
downscaling is the process of estimating values for smaller scales
without observation of the values available in surrounding locations.
Soil distribution at one scale is therefore used to estimate the distri-
bution at another scale.

In order to transform soil information to another scale, spatial pre-
diction techniques have been applied in digital soil mapping litera-
ture (Grunwald, 2010). Beside some theoretical considerations for
aggregation and disaggregation of soil information, McBratney
(1998) proposed three approaches for disaggregation of polygon
soil maps: transfer functions, fractal analysis, and pycnophylactic
splines. De Bruin et al. (1999) used stepwise image interpretation
and inductive learning to formalize soil–landscape relationships. Ter-
rain objects, which were delineated from aerial photographs, were
connected with location-specific soil sample data. Bui and Moran
(2001) apply decision trees for disaggregation and extrapolation of
fluvial facies units into unmapped areas.

In areas where no soil profiles were available and no detailed in-
formation on where in the landscape a specific soil type of a complex
map unit is located, several studies proposed clustering methods for
spatial predictions. Bui and Moran (2001) use k-means clustering to
classify soils with Landsat MSS bands, slope position and relief as pre-
dictor variables. Yang et al. (2011) used fuzzy clustering to quantify
soil–landscape relationships on a 1:20.000 soil map in Canada. The
extracted knowledge was used for refined soil mapping using the
Soil Land Inference Model SoLIM. Similarly, Smith et al. (2010) disag-
gregated soil maps in the Canadian province of British Columbia using
terrain attributes, landform classes, and ecological subzones as pre-
dictor variables for fuzzy classification rules.

However, in cases where representative soil profiles as training
data were available, supervised classification is an alternative method
for spatial prediction. The benefit from supervised classification is its
ability to estimate prediction accuracy and the identification of clearly
described map units or subunits. Thereby it is possible to follow the
traditional top-down approach in soil mapping to divide an existing
map unit in more homogeneous sub-units and leave the former
boundaries of map polygons unchanged. This is in contrast to the
aforementioned studies which result in completely disaggregated
soil maps.

However, there are situations in which dissolving is not intended.
Kempen et al. (2009) presented an approach to update the existing
1:50.000 Dutch soil map. This was motivated due to an area-wide
transformation of peat soils to other soil types.

Similar to Kempen et al. (2009), we do not alter the boundaries of
soil polygons in our study. Even though polygons of soil maps cannot
be viewed as 100% correct, soil maps serve as a basis for several appli-
cations. We aim to disaggregate not the entire mapped area, but only
complex map units. Therefore, the existing methods are not useful for
our purpose.

Moreover, regarding the number of different classes it is unfeasi-
ble to estimate one model for our entire study area. If the number
of classes becomes very high—as in our case 104 groups of map
units—one model needs to be either very complex or it is not able
to discriminate between all single classes (cf. Bui and Moran, 2001;
Kempen et al., 2009). Therefore, we developed an approach applying
comparably simple but class-specific models for the delineation of
sub-areas. Almost all studies in which categorical map units were dis-
aggregated considered a smaller number of classes (i.e. less than 10
classes: Behrens et al., 2010; Brus et al., 2008; Sun et al., 2011; 10 to
20 classes: Debella-Gilo and Etzelmüller, 2009; Hengl et al., 2007;
Kempen et al., 2009; Moonjun et al., 2010; more than 20 classes:
Grinand et al., 2008; Smith et al., 2010; Stum et al., 2010). Only
Smith et al. (2010) predicted more than 100 classes, however not in
a single model but with knowledge-based fuzzy classification rules
for every class separately.

Because many map units do not occur on the entire map but only
on small subareas a stratification of the study-area to get parsimoni-
ous models is also favorable in our case.

In Bavaria, traditional soil maps were the main source of soil infor-
mation. Even though 9924 soil profiles are available in Bavaria for
modeling purposes, it was not possible to generate soil maps using
classical spatial interpolation techniques. In many cases, several sam-
pling points were located on representative landscape positions with-
in few hundreds of meters on a catena. Therefore, we encountered a
high density of profiles in some areas, whereas in others the sampling
is rather sparse. Moreover, soil properties data are available only for a
small subset of the sample (e.g. soil chemical properties are available
for only 11% of the profiles). For the majority of samples, we only got
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information on the soil type, coordinates, succession of soil horizons,
and texture. To generate high-resolution soil data we needed to strike
a new path.

In this study, we present a method to disaggregate soil map units,
especially suitable for complex map units in which two or more dif-
ferent soil types were combined. Thereby we follow the traditional
top-down approach in soil mapping to divide an existing map unit
in more homogeneous sub-units. We use decision tree-based models
to quantify the relationship between soil types and topography and
use these models to predict the single soil types within the complex
map unit.

2. Materials and methods

2.1. Study area

The study area is the forest area of the German federal state Bavar-
ia in the south-east of Germany which is covered by the 1:25.000 soil
map (Figure 1). Bavaria has an area of ca. 70 550 km2 and is charac-
terized by diverse physical-geographic conditions. It measures ap-
proximately 366 km in N–S direction and 352 km in E–W direction
and has a long altitudinal gradient from Kehl am Main (102 m asl)
to Germany's highest mountain in the south (Zugspitze 2962 m asl).
The climate is cool humid with a mean annual temperature decreas-
ing from 10.3 °C at lower elevations to −4 °C at the summits and an-
nual precipitation ranging from 483 mm up to 2800 mm. Due to a
high geological diversity (from crystalline basement rocks, volcanic
rocks, different triassic sedimentary rock, large areas of limestones,
tertiary molasse to quaternary fluvial, glacial, and aeolian deposits),
Bavaria is also characterized by a rich mosaic of soil types.
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Fig. 1. Complex and non-complex soil map units of the
2.2. Soil profile database

We established a soil profile database as our main information
about soil types for statistical modeling. Our aim was to merge all
soil profiles within forests which were available in the forest and en-
vironmental administration in the state of Bavaria, inside as well as
outside of the mapped area (Figure 2). Since our focus lies on the for-
est area, we only took soil profiles into account which were located in
forests.

We ended up with 9924 soil profiles consisting of 93 different soil
types according to the German soil classification system. When using
the terms soil type and complex soil map unit, we refer to the German
soil classification system (Ad-hoc-AG Boden, 2005). A soil type is
characterized by a specific sequence of soil horizons influenced by
soil forming processes. Every soil map unit contains information
about the soil type and its parent material. A soil type in the German
soil classification system is similar to the reference soil groups in the
World Reference Base for Soil Resources (IUSS Working Group WRB,
2007). In cases in which there are two or more soil types associated
into one single map unit, we use the term complex soil map unit. With-
in the WRB system, there is a similar approach for the description of
complex units (IUSS Working Group WRB, 2010). Throughout this
paper, the German soil types were translated into WRB names. All
profiles were attributed with geographic coordinates to join the
points with topographic observations.

2.3. Soil map

We used the official soil map of Bavaria (Bavarian Environment
Agency, Übersichtsbodenkarte ÜBK25, http://www.lfu.bayern.de). It is
0 500 1,000250 Kilometers

N

ap unit 

soil map unit 

study-area and location in Germany and Europe.
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Fig. 2. Distribution of 9924 soil profiles located in forested areas.

Table 1
Terrain attributes used as topographic covariates for statistical modeling. All parame-
ters were calculated in SAGA-GIS.

Terrain attribute Definition

Topographical wetness
index (twi)

SAGA Wetness Index, implemented in SAGA GIS
(Böhner et al., 2002)

relative height (hut) vertical distance to channel network
floodplain index (fpi) Indicates flat areas with high flow accumulation

and low relative elevation
(1+slope gradient) * (1 - twi) *
(1+relative height)

modified floodplain
index (fpi2)

Indicates areas with high flow accumulation
and low relative elevation
(1+relative height) * (1 – twi)

mass balance index
(mbi)

Indicates areas of erosion and deposition
(Möller et al., 2008)
(plan-curvature+profile-curvature) *
(1+slope)

Slope gradient according to Zevenbergen and Thorne (1987)
mid-slope position The higher the relative vertical distance to the

mid slope in valley or crest directions the
higher this value. (Böhner and Antonic, 2009)
|2 * normalized.height – 1|
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mapped with a scale of 1:25.000 and covers 64 071 km2 which is
about 80% of the Bavarian State territory (south-east Germany,
Figure 1). The map contains more than 700 different map units, i.e.
a clearly defined entity in the map legend, from which more than
450 are complex map units containing more than one single soil
type. It accounts for the official German guideline for soil mapping
(Ad-hoc-AG Boden, 2005). Soil mapping in Germany follows the con-
cept of substrate-systematic mapping, which means that every soil
map unit contains information about the soil type and its parent
material.
2.4. Topographic covariates

We use a digital elevation model (DEM) with a cell size of 10 m as
basis for the delineation of topographic attributes. It was constructed
using airborne laser-scan data by the Bavarian Topographical Survey
and has a vertical accuracy of 0.3 m and a positional accuracy of ap-
proximately 1 m. Errors and anthropogenic elements like roads or
settlements in the DEM were eliminated by the topographical survey
before terrain attributes were derived.

We derived a set of 23 terrain attributes. Besides classical local ter-
rain attributes calculated with a 3×3 moving window (e.g. slope gra-
dient, curvatures), we derived complex secondary terrain attributes
(Pike et al., 2009; Wilson and Gallant, 2000). In addition, we used dif-
ferent window sizes (8×8, 15×15) to analyze the effect of scales and
spatial context (Grinand et al., 2008; Smith et al., 2006). To select the
most important variables and to remove highly correlated variables,
we applied the feature selection method ReliefF (Kira and Rendell,
1992; results not shown). ReliefF measures the usefulness of terrain
attributes based on their ability to distinguish between very similar
soil profiles belonging to different soil types. We found a high impor-
tance of secondary terrain attributes. Slope gradient (calculated on a
3×3 window) was the only important local terrain attribute. Finally,
we got seven topographic attributes which were used for modeling
(Table 1). All terrain parameter were calculated in SAGA-GIS (Saga
Development Team, 2011).
2.5. Data preparation

First, all georeferenced soil profiles were attributed with the seven
topographic attributes in order to establish a dataset for subsequent
modeling. We interpolate our profiles with the terrain parameter
using the bilinear interpolation method. Due to the fact that the coor-
dinates of our soil profiles were mainly measured with GPS, we had to
deal with a certain degree of spatial uncertainty, because the forest
canopy blocks and reflects the satellite signal causing multipath ef-
fects and signal losses that lower the accuracy (Mauro et al., 2011).
Smoothing values by interpolation attenuates this problem.

Secondly, we grouped the 250 complex soil map units that needed
to be disaggregated, according to their soil types. In cases in which
two or more map units had the same combination of soil types,
they were grouped together, e.g. Calcaric Cambisols and Umbric Lep-
tosols developed on dolomite on the one hand and on limestone on
the other. Finally, we got 104 different groups of map units with the
same combination of soil types. 89 groups consist of only two differ-
ent soil types, the remaining 15 groups consist of three different soil
types. The number of profiles which were assigned to the 104 groups
ranged from 35 to 2668 (median=339.0, mean=638.4).
2.6. Soil landscape relationship

Topography is one of the elementary soil forming factors. The in-
fluence of relief on the spatial distribution of soils especially on field
to landscape scale was first formulated in the catena concept
(Milne, 1935). Numerous studies in soil landscape modeling and dig-
ital soil mapping used topographic attributes as spatial covariates
(see for an overview Behrens et al., 2010; Deumlich et al., 2010;
McBratney et al., 2003; Möller et al., 2008). Our method relies on
these relationships. We hypothesize that it is possible to separate dif-
ferent soil types within a complex map unit by quantifying the func-
tional relationship between soil type and topography by means of
statistical modeling. We expect that we can derive a specific topo-
graphic fingerprint for each soil type by investigating the distribu-
tions of several topographic attributes for different soil types
respectively. If the fingerprint of a specific soil type is different from
that of an accompanying soil type, we are able to draw new bound-
aries inside a soil map polygon.

Fig. 3 shows boxplots of the aforementioned Stagnosols and Lep-
tosols for three topographic attributes.
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Fig. 3. Boxplots of topographical wetness index, slope gradient, and floodplain index for Stagnosols and Leptosols of our soil profile database. The values for the topographic attri-
butes were transformed. The soil types show a significant difference regarding topographical gradients. We use these differences to classify the soil types with random forest.
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The plots show significant differences in the appearance of these
soil types on topographic gradients. These differences can be used
for classification by decision tree-based classification models.

There are several complex map units in our soil map in which
other parameters than topography might have a significant influence
on the spatial arrangement of and the differentiation between differ-
ent soil types like geological, chemical, or hydrological conditions. For
example a map unit containing different cambisols developed on ter-
tiary marl or sandstones or a map unit containing calcaric and dystric
Gleysols is much more influenced by geology than by topography.
Different geologic conditions may also be reflected by topography,
but not at all times. In order to produce meaningful results, we select-
ed only those complex map units that can be separated with topo-
graphical information according to our expert-knowledge. From the
450 existing complex map units, we selected 250 units for spatial dis-
aggregation with our approach presented here. The area of these 250
complex units is 14776 km2, which is 23% of the entire soil map. Re-
duced to the forested area, these 250 map units cover 6150 km2 (i.e.
30% of the soil map under forest).

2.7. Statistical modeling

Classification of our soil types was performed with random forest
(Breiman, 2001). Random forest is an ensemble method in which
many different classification trees are combined to produce a more
stable and accurate classification compared to a single decision tree
(Bauer and Kohavi, 1999; Breiman, 1996; Dietterich, 2000). Each
tree is built on a bootstrap sample of the given data. To form the en-
semble, the different trees are combined using bagging (bootstrap ag-
gregating). The resulting “forest” is a “random” forest because at each
split only a random subset of the candidate predictors is considered
for the binary partition (Elith and Graham, 2009). This de-correlates
the trees, improves the variance reduction and finally leads to more
accurate predictions (Bühlmann and Yu, 2002; Strobl et al., 2009).
The predictions of each single tree are combined using a majority
vote to get a final ensemble prediction. In recent years, random for-
ests have been widely used in digital soil mapping (e.g. Roecker
et al., 2010; Stum et al., 2010).

Widely used decision trees like Breiman et al.'s CART (1984) or
Quinlan's C5 (http://www.rulequest.com/, 1993) were built on recur-
sive partitioning and impurity reduction. Entropy measures, like the
Gini Index or the Shannon Index, are used to quantify the impurity
in each node (Hastie et al., 2009; Strobl et al., 2009). When working
with environmental data and in particular topographical data as cov-
ariates for statistical modeling, we always have to concern multicolli-
nearity (Graham, 2003; Hengl and MacMillan, 2009). Strobl et al.
(2007, 2008) showed that CART-based random forest implementa-
tions (like the R-package randomForest, Liaw and Wiener, 2002) are
biased when predictor variables are correlated or measured on
different scales. Therefore, we used a random forest implementation
applying conditional inference trees as base learners, which has been
proven to be unbiased (Hothorn et al., 2006; Strobl et al., 2010). The
splitting in recursive partitioning in conditional inference trees is
based on significance tests of independence between any of the predic-
tors and the response. Such a framework is implementedwith the func-
tions ctree() and cforest() in the package party in R (Hothorn et al.,
2006; Müller et al., 2009; R Development Core Team, 2010).

Typically, predictions of classification models like random forest
are response classes. The predictions are made on a majority vote
using the predicted probabilities for the present soil types, i.e. the
class with the highest probability is assigned (Strobl et al., 2009).
We do not use the predicted classes in our study, but an estimate of
the conditional class probabilities. We defined a probability threshold
at P>0.7 to allow for unspecified classifications in the model assign-
ing a specific soil type in the prediction only if its probability exceeds
0.7. All areas with a maximum probability for any soil type below 0.7
were classified as “indifferent”.

Validation of the random forest models was performed using the
out-of-bag error. The predictive performance of the model is calculat-
ed on those observations which were not included in the learning
sample for a specific decision tree, i.e. those observations which
were not part of the bootstrap sample of the original data set. Using
those out-of-bag observations, we have independent test samples
for computing the prediction accuracy. It could be shown that the
out-of-bag error is a conservative estimate (Strobl et al., 2009).

In order to detect the dependencies between predictor and depen-
dent variables and to select the relevant predictors, one can calculate
variable importance measures. The extraction of important predictors
is calculated on the permutation accuracy importance measure. This
measure is estimated by randomly permuting the values of a particu-
lar variable. By comparing the prediction accuracy before and after
permuting a variable we get a measure of variable importance. For
plausibility check in this study we use the permutation importance
in the party package because it is a reliable measure even in cases
with correlated predictors (Strobl et al., 2010).

Since there are some soil types in our profile database which were
very frequent (such as Cambisols, Gleysols, or Luvisols) and others
that are rather scarce (e.g. Histosols or soil types with stagnic proper-
ties), we often had the problem of extremely unbalanced datasets for
modeling. So at least one of the soil types constituted only a very
small minority of the data which may cause a limited classification
performance (Japkowicz and Stephen, 2002). Therefore, we imple-
mented an if-then condition in our modeling framework: if the num-
ber of observations for one soil type in our database is greater than a
proportion of 2:1 to the number of profiles of the other soil type in the
groupedmap unit, then we take a random sample of the former to en-
force a proportion of 2:1. The proportion of 2:1 is a compromise be-
tween having a more balanced dataset on the one hand and using

http://www.rulequest.com/


Table 2
Classification accuracy for unbalanced and balanced dataset.

Full data Reduced data

Map unit ST11 ST2 n ST12 n ST2 Acc3 TP14 TP2 n ST1 n ST2 Acc TP1 TP2

70 BB5 RQ6 2000 35 0.998 1 0 75 35 0.7 0.9 0.26
3 BB BB/CF7 2000 155 0.93 0.99 0.03 310 155 0.77 0.85 0.61
92 SS8 GG9 741 113 0.9 0.97 0.41 226 113 0.83 0.93 0.62
103 SS FF10 741 85 0.95 0.98 0.67 170 85 0.91 0.94 0.85

1soil type1, 2 number of observations for soil type 1, 3 Accuracy (correctly classified instances), 4 TP1=true positive (fraction of soil type 1, that is actually classified as soil type 1), 5

Cambisol, 6 Anthrosol, 7 Calcaric Cambisol, 8 Stagnosol, 9 Gleysol, 10 Leptosols.
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sufficient samples on the other (Japkowicz and Stephen, 2002). The
influence of an unbalanced dataset on model performance is pre-
sented in Table 2.

Even though the overall model performance calculated on the en-
tire data for the unbalanced dataset is better than for the reduced
dataset, the problem lies in the ability of the model to discriminate
between the two soil types. The evaluation of the different classes
separately is performed with true positive measure (TP). TP is the
fraction of a predicted class which is actually this class. Fitting a
Fig. 4. Illustration of our modeling framework for spatial disaggregation of complex soil ma
formation. The map units were grouped according to their combination of soil types. For clas
modeling is performed with random forest. Model validation is estimated with the out-of-ba
in those areas that belong to a specific group of complex map units (C, D). To generate the
model on a highly unbalanced dataset which only predicts the over-
represented class one gets a high classification accuracy but TP=0
for the under-represented class (see map unit 70 in Table 2).

The entire modeling framework is illustrated in Fig. 4.

2.8. Field validation

In addition to the statistical model evaluation using the out-of-bag
error, we estimated model performance in addition on field validation
p units. We disaggregate only those map units which can be separated with terrain in-
sification of soil types we select specific soil samples from a profile database. Statistical
g error (A). The soil map (B) will be stratified for prediction. We predict soil types only
final map we merge the single disaggregated parts to one soil map (E).
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data as suggested by Brus et al. (2011). Subsequent tomodeling, soil ex-
perts described augered soil profiles on defined locations. The distribu-
tion of sampling locations followed a stratified random sampling
design. First, the study area was subdivided based on an official physio-
graphic classification of Bavaria (Wittmann, 1991). Within these areas,
sampling locationswere randomly distributed over the entire predicted
area. In sum we got 1820 validation points.

We grouped the validation data according to the occurrence of soil
types in different map units to investigate which soil types could be
separated successfully.
3. Results and discussion

3.1. Statistical Modeling

Random forest models are estimated for each of the 104 grouped
map units. We calculated 500 trees in every random forest model
(the “ntree” argument in cforest). Random forest models with 1000
trees did not improve the performance (results not shown). The
models were stable mostly with less than 200 trees. The number of
randomly selected variables as candidates at each split (the “mtry” ar-
gument in cforest) was three as recommended by Hastie et al. (2009)
(mtry=square root of number of predictor variable).
Fig. 5. Six cutouts of our resulting disaggregated soil map. The polygons of the original soil m
scaling (non-complex map units) were colored in white. Areas which were classified as ind
The statistical validation of the models based on the out-of-bag
error showed misclassification rates ranging from 0.09 to 0.55 with
a median of 0.31. Compared to other digital-soil-class-mapping stud-
ies this are quite good results (cf., e.g., Hengl et al., 2007; Kempen
et al., 2009; Lemercier et al., 2012; Stum et al., 2010).

3.2. Prediction

After fitting the 104 random forest models, we applied these
models on the corresponding regions of the soil map in order to pre-
dict the occurrence probability of each soil type that is present in the
map unit.

Fig. 5 shows six examples of thefinal disaggregated soil map. Finally,
57% of the area have been predicted as a specific soil type (p>0.7),
whereas 43% have been predicted as ‘indifferent’.

3.3. External validation

Estimation of model performance on 1820 field validation points
gave an overall accuracy of 70% (1246 correct classified, 540 incorrect,
8 not usable due to erroneous profile descriptions).

The predictive performance depended on the number of available
profiles.
ap were shown in solid black lines. Map units which were not considered during down-
ifferent (predicted probability for every soil typeb0.7) were hatched.
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In Fig. 6 we plot the accuracy calculated on the field validation data
over the number of profiles for a given group of map units.We plot only
those groups ofmap units which havemore than 15 validation points in
order to have reliable accuracy values. Accuracy increases roughly with
the number of calibration data. If the number of data points exceeds
350, this correlation disappears and the accuracy values becomes
more scattered. However, accuracy values always exceed 0.7. There
are two outliers in the plot. One with an accuracy of 0.44 and 1184 cal-
ibration profiles which is a map unit in which Stagnosols and Cambisols
with stagnic properties were grouped. And a second outlier with an ac-
curacy of 0.5 and 447 calibration profiles, which is a map units in which
Gleysols, deep soils and Stagnosols were grouped. Obviously, these two
groups of soil types are too similar regarding their topographical prop-
erties that they couldn't be separated well.

These findings are very promising and confirm our approach. It
seems that even better results are possible, ifmore profiles are available.

Fig. 7 shows a fluctuation plot, which is a graphical representation
of contingency table. The extent of a graph is proportional to count.
On the right hand side of the plot the numbers of correct and incor-
rect predicted validation points are listed.

12 out of 14 groups have more true predictions than false predic-
tions. For these 12 groups, we can conclude that separation between
groups of soil types is possible, however with different success, be-
cause prediction accuracy differs between the groups. Groups with
better reliability are those in which soils are highly influenced by to-
pographic characteristics, which was also reported by Debella-Gilo
and Etzelmüller (2009). A high proportion of true predictions can
be found in groups which differ in the profile depth (deep soils vs.
shallow soil, initial soils vs. shallow soils) due to the strong depen-
dency of profile depth and terrain position. Also Histosols could be
predicted very successfully, since there is a strong influence of
water availability on their development which is in turn mainly con-
trolled by topography. Our results confirm findings of Seibert et al.
(2007) in Swedish forest soils, who could show a strong dependency
of Histosols with topography.
number of profiles for modeling
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Fig. 6. Classification accuracy calculated on field-validation data plotted over the num-
ber of profiles used for training. There is a relationship between model performance
and the number of profiles available for calibration. If the number of data points ex-
ceeds 350 this correlation disappears and the accuracy values becomes more scattered.
However, accuracy values always exceed 0.7.

Fig. 7. Fluctuation plot of true and false predicted groups of map units. Numbers on the
right hand side indicates the count of true and false. The size of the figures is propor-
tional to the count of true and false which is displayed on the right hand side.
Except from Histosols and Stagnosols map units containing Gley-
sols could be separated the worst. Mainly because those map units
are located in flat valley bottoms where no variability in terrain exists.
Therefore, discrimination based on terrain attributes becomes ex-
tremely difficult. Similar to Histosols, the discrimination of Gleysols
vs. Stagnosols is strongly influenced by the availability of groundwa-
ter and surface water respectively, which depends on topography and
could therefore be executed successfully.

With the introduction of a threshold at P>0.7 for the prediction of
soil types we are able to generate results with high accuracy as shown
with the field validation data. On the other hand, 43% of the predicted
area classified as “indifferent” is not optimal for our purpose. To capture
this problemwe might reduce the threshold and thereby minimize the
indifferent area. The threshold can be reduced until the indifferent class
disappears completely and prediction ismadeon the highest class prob-
ability (P>0.5). Prediction in such a way is done in many studies (e.g.
Behrens et al., 2010; Debella-Gilo and Etzelmüller, 2009; Grinand
et al., 2008). However, prediction performance has then to be estimated
inmore detail on additional validation datawhichwere not available at
the moment. Response surface plots (Figure 8) indicate less accurate
predictions at smaller probabilities.

3.4. Plausibility check

Finally we calculated the variable importance for each predictor
variable in all 104 random forest models and visualized response sur-
faces for every soil type of the models. This procedure provides
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Fig. 8. Variable importance plot (top), response surfaces (middle), and exemplary cutout of the soil map for two randomly selected groups of soil units. In the response surface plots
the probability of a specific soil type is plotted over the two most important predictor variables in the model. Coloring of the response surfaces indicates our probability thresholds
(P>0.7, 0.7>P>0.3, Pb0.3). The area of the response surface between the thresholds indicates unspecified predictions (“indifferent”). The plots were used to validate our models.
We checked if soil types are located where we expected them following our expert knowledge. The plots confirm our expectations, e.g. shallow Leptosols in exposed position where
erosion occur (group 103), Anthrosols at footslopes where soil material is accumulated, and Gleysols in area with low vertical distance to channels (group 58). “fpi”=flood plain
index; “fpi2”=modified flood plain index; “hut”=relative height; “twi”=topographic wetness index; “mbi”=mass balance index.
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reasonable insights on how the soil types depend on the topographic
attributes, which were the relevant attributes in the model, and
where specific thresholds can be found. Response surface plots are
an effective tool to display model behavior and thresholds in more
than one dimension (Elith and Graham, 2009; Lintz et al., 2011).

During this procedure we also checked whether our soil units
were predicted in those landscape positions where expert knowledge
would expect them. For example, a map unit consisting of Cambisols
and Leptosols we would expect to find Leptosols with shallow soil
depth on exposed positions with high slope angle and mass balance
index where erosion occur. Cambisols, on the other hand, should be
located in flat areas with a low mass balance index, i.e. those areas
where the development of Cambisols is not disturbed by erosion
processes

Fig. 8 shows the variable importance, response surfaces for the
two most important variables in the model, as well as an exemplary
cutout of the soil map for that particular group for two specific groups
of soil units.
All plots reveal meaningful dependencies between soil types and
topography. In group 103, Stagnosols and Leptosols were aggregated.
The plots show a high importance of flood plain index (fpi) and slope
gradient (see Figure 3). The remaining parameters have only margin-
al influence on the model. The response surfaces show high probabil-
ity for Leptosols for high value of flood plain index and slope gradient,
i.e. exposed terrain positions such as steep backslopes. Stagnosols are
influenced mainly by the flood plain index. Slope gradient has no ef-
fect on Stagnosols in group 103. These dependencies can also be iden-
tified in the map cutout.

Gleysols and Anthrosols, which were aggregated in group 58,
could be discriminated mostly by the vertical distance above a chan-
nel (hut), the midslope position, and slope gradient. Anthrosols can
be found at footslopes where eroded material is accumulated (high
midslope). On the other hand, Gleysols have their highest probability
in areas with low vertical distances to channels. In the map cutout,
Gleysols were located in the flat and inner areas of the original map
polygon. Anthrosols could be found at the bottom of slope gradients
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where colluvium has been deposited. The area between these two
landscape positions is classified as indifferent.
3.5. Global variable importance

Lastly we evaluated the variable importance of all predictor vari-
ables over all 104 random forests. Therefore, we counted how often
a variable is one of the two most important predictors in a model
and how often a variable is one of the two least important predictors.
These frequencies are plotted in Fig. 9.

The plots show patterns which complements one another. Flood
plain index (fpi), slope gradient, relative height (hut), and modified
flood plain index (fpi2) are frequently one of the two most important
predictors in a random forest. Midslope position and mass balance
index (mbi) are only selected nine and eleven times respectively as
one of the two most important predictors in all models. However,
these two predictors are very frequently one of the two least impor-
tant predictors and the remaining five are all less than 20 times part
of this group. We found no preference of using either local parameter
(slope gradient, mass balance index) or regional parameters (all the
remaining) as important variable. This suggests that both small
scale variations as well as landscape scale patterns provide important
information in our approach.
4. Conclusions

High-resolution spatial information of soils and soil properties are
essential for many application areas in environmental sciences. Soil
maps provide the main information on soils. We demonstrate a meth-
od for the spatial disaggregation of existing soil maps for providing
soil information on higher resolution. Our focus lies on soil map
units in which two or more different soil types were aggregated
into one map unit.

We found a significant influence of topography on the spatial ar-
rangement of soil types. By comparing different soil types we found
a characteristic topographical fingerprint for each soil type. These to-
pographical differences were quantified with unbiased random forest
models.
Future work will focus on the selection and assignment of soil pro-
file data with representative soil physical and soil chemical properties
to the disaggregated and thereby newly generated map units. Soil
property maps will be generated by calculating mean values for
each map unit. In those areas, in which the models predict the new
“indifferent class”, a mean value of the former entire map units is
assigned, as it was before disaggregation.
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