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Abstract

We review various recent approaches to making digital soil maps based on geographic information systems (GIS) data

layers, note some commonalities and propose a generic framework for the future. We discuss the various methods that

have been, or could be, used for fitting quantitative relationships between soil properties or classes and their ‘environment’.

These include generalised linear models, classification and regression trees, neural networks, fuzzy systems and

geostatistics. We also review the data layers that have been, or could be, used to describe the ‘environment’. Terrain

attributes derived from digital elevation models, and spectral reflectance bands from satellite imagery, have been the most

commonly used, but there is a large potential for new data layers. The generic framework, which we call the scorpan-

SSPFe (soil spatial prediction function with spatially autocorrelated errors) method, is particularly relevant for those places

where soil resource information is limited. It is based on the seven predictive scorpan factors, a generalisation of Jenny’s

five factors, namely: (1) s: soil, other or previously measured attributes of the soil at a point; (2) c: climate, climatic

properties of the environment at a point; (3) o: organisms, including land cover and natural vegetation; (4) r: topography,

including terrain attributes and classes; (5) p: parent material, including lithology; (6) a: age, the time factor; (7) n: space,

spatial or geographic position. Interactions (*) between these factors are also considered. The scorpan-SSPFe method

essentially involves the following steps:

(i) Define soil attribute(s) of interest and decide resolution q and block size b.
(ii) Assemble data layers to represent Q.

(iii) Spatial decomposition or lagging of data layers.

(iv) Sampling of assembled data (Q) to obtain sampling sites.

(v) GPS field sampling and laboratory analysis to obtain soil class or property data.

(vi) Fit quantitative relationships (observing Ockham’s razor) with autocorrelated errors.

(vii) Predict digital map.
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(viii) Field sampling and laboratory analysis for corroboration and quality testing.

(ix) If necessary, simplify legend or decrease resolution by returning to (i) or improve map by returning to (v).

Finally, possible applications, problems and improvements are discussed.
D 2003 Elsevier B.V. All rights reserved.
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Greenhough’s basic notion that his map should be of digital soil property and class maps with the con-
entirely empirical, and that its drawing should be

based only on observations, and not tied to any

particular theory about which rocks were where,

and why and when and how they had been laid

down. Rumination, Greenhough reasoned, had no

place in a geological map: what should appear on

the finished sheets of his charts should reflect

facts that were quite unsullied by any theoretical

presuppositions. (Simon Winchester, 2001. The

Map that Changed the World. Viking, London.

338 pp. p. 231.)
1. Introduction

With the great explosion in computation and in-

formation technology has come vast amounts of data

and tools in all fields of endeavour. Soil science is no

exception, with the ongoing creation of regional,

national, continental and worldwide databases. The

challenge of understanding these large stores of data

has led to the development of new tools in the field of

statistics and spawned new areas such as data mining

and machine learning (Hastie et al., 2001). In addition

to this, in soil science, the increasing power of tools

such as geographic information systems (GIS), GPS,

remote and proximal sensors and data sources such as

those provided by digital elevation models (DEMs)

are suggesting new ways forward. Fortuitously, this

comes at a time when there is a global clamour for soil

data and information for environmental monitoring

and modelling.

Consequently, worldwide, organisations are inves-

tigating the possibility of applying the new spanners

and screwdrivers of information technology and sci-

ence to the old engine of soil survey. The principal

manifestation is soil resource assessment using geo-

graphic information systems (GIS), i.e., the production
straint of limited relatively expensive fieldwork and

subsequent laboratory analysis.

The production of digital soil maps ab initio, as

opposed to digitised (existing) soil maps, is moving

inexorably from the research phase (Skidmore et al.,

1991; Favrot and Lagacherie, 1993; Moore et al.,

1993) to production of maps for regions and catch-

ments and whole countries. The map of the Murray–

Darling basin of Australia (Bui and Moran, 2001,

2003) comprising some 19 million 250� 250 m pixels

or cells and the digital Soil Map of Hungary (Dobos et

al., 2000) are the most notable examples to date.

McBratney et al. (2000) reviewed pedometric meth-

ods for soil survey and suggested three resolutions of

interest, namely >2 km, 20 m–2 km and < 20 m

corresponding to national to global, catchment to

landscape and local extents. Table 1 provides a slightly

more detailed overview with five resolutions of inter-

est. The third one (D3) which deals with subcatch-

ments, catchments and regions is the one which

attracts the most attention. In the language of digital

soil maps (Bishop et al., 2001), different from that of

conventional cartography, scale is a difficult concept,

and is better replaced by resolution and spacing. D3

surveys, which in conventional terms, have a scale of

1:20,000 down to 1:200,000, have a block or cell size

from 20 to 200 m, a spacing also of 20–200 m and a

nominal spatial resolution of 40–400 m (see Table 1).

The Netherlands has complete coverage at a nom-

inal spatial resolution of 100 m. In France, on the other

hand, a highly developed western economy, but with a

large land area, only 26% of the country is covered at a

nominal spatial resolution of 500 m and 13% at a

nominal spatial resolution of 200 m (King et al., 1999).

One-third of Germany is covered with soil maps at a

nominal spatial resolution of 10 m (1:5000), but most

of these are not yet digital (Lösel, 2003). On the other

hand, complete coverage of Germany at coarser reso-



Table 1

Suggested resolutions and extents of digital soil maps

Name Approximate

USDA survey

ordera

Pixel size and

spacingb
Cartographic

scaleb
Resolution

‘loi du quart’c
Nominal spatial

resolutionb
Extentd Cartographic

scaleb

D1 0e < (5� 5) m >1:5000 < (25� 25) m < (10� 10) m < (50� 50) km >1:5000

D2 1, 2 (5� 5) to

(20� 20) m

1:5000–

1:20,000

(25� 25) to

(100� 100) m

(10� 10) to

(40� 40) m

(500� 500) to

(200� 200) km

1:5000–

1:20,000

D3 3, 4 (20� 20) to

(200� 200) m

1:20,000–

1:200,000

(100� 100) to

(1�1) km

(40� 40) to

(400� 400) m

(2� 2) to

(2000� 2000) km

1:20,000–

1:200,000

D4 5 (200� 200) to

(2� 2) km

1:200,000–

1:2,000,000

(1�1) to

(10� 10) km

(400� 400) to

(4� 4) km

(20� 20) to

(20,000� 20,000) km

1:200,000–

1:2,000,000

D5 5 >(2� 2) km < 1:2,000,000 >(10� 10) km >(4� 4) km >(200� 200) km < 1:2,000,000

a Soil Survey Staff (1993).
b Digital soil maps are partly defined by their block size and spacing (refer to Bishop et al., 2001, Fig. 3), which, here, we equate with pixel

size. The cartographic scale, calculated as 1 m/(side length of 1000 pixels), assumes that the smallest area discernible is 1�1 mm. Conversely,

the pixel size ( p) of a 1:100,000 conventional map can be calculated as p= 1/v*k= 100,000� 0.001 = 100 m if we consider the smallest area

resolvable on a map (k), with representative fraction v to be 1�1 mm. Following notions in microscopy, and the Nyquist frequency concept

from signal processing, it may be argued that the minimum resolution is the size of 2� 2 pixels. We define this here as the nominal spatial

resolution. Small pixel sizes correspond to fine resolutions and large pixel sizes correspond to coarse resolutions.
c According to Boulaine (1980), the smallest area discernible on a map is 0.5� 0.5 cm or one quarter of a square centimetre, hence, the term

‘loi du quart’. The USDA Soil Survey Field Handbook (Soil Survey Staff, 1993, Table 2-2) quotes 0.6� 0.6 cm. Both of these really refer to

conventional map delineations, and resolution estimates based on these minimum areas should be regarded as very conservative.
d Calculated as minimum resolution times 100 (pixels) up to maximum resolution times 10,000 pixels.
e This order was suggested by Dr. Pierre C. Robert, University of Minnesota, for applications in precision agriculture.
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lutions (nominally 100 and 400 m) is available. The

situation in larger countries such as Australia and

Brazil is much worse. In Australia, for example, prior

to Moran and Bui’s (2002) work, the Murray–Darling

Basin, Australia’s most important agricultural region

comprising some 14% of the land area, had 50%

coverage at 500 m and 3% at 200 m. In Brazil, the

country is uniformly covered by the Soil Map of Brazil

and the Agricultural Suitability Map of Brazil at a

nominal spatial resolution of 10 km, exploratory soil

maps by the RADAM/EMBRAPA Solos project

(1:1,000,000 or nominally 2 km) and Agroecological

Zoning (diagnosis of environmental and agro-socio-

economic features, nominally 4 km or 1:2,000,000).

The main reason for this lack of soil spatial data

infrastructure worldwide is simply that conventional

soil survey methods are slow and expensive. This

paper addresses this worldwide problem head on.

GIS, a tool for collating all kinds of spatial infor-

mation (Burrough and McDonnell, 1998), in itself is

incapable of soil mapping; it requires an intellectual

framework. Indeed, most of the real computational

work so far has been done outside the framework of

formal GIS packages. We feel it is timely to outline a

general intellectual and operational framework for
digital mapping of soil properties and classes for D3

surveys, in the form of an empirical partially deter-

ministic partially stochastic model—the so-called soil

spatial prediction functions (SSPFe) with spatially

autocorrelated errors. We review various approaches

with numerous examples from the literature, which

are largely seen as special cases of the approach

suggested here. First, we trace the development of

the quantitative ideas and methods over the last 60 or

so years. An independent review of digital soil map-

ping under the name of ‘predictive’ soil mapping has

appeared (Scull et al., 2003a,b).
2. Brief review of approaches to soil spatial

prediction

Hudson (1992) contended that soil survey is a

scientific strategy based on the concepts of factors

of soil formation coupled with soil–landscape rela-

tionships. Hewitt (1993) pleaded for the need for

explicitly stated, but not necessarily quantitative,

models for soil survey. The models may be know-

ledge-based (Bui, 2003). In this view, soil maps are

representations of soil surveyors’ knowledge about



1 Soil attributes is a general term to mean that which can be

attributed to the soil by measurement or inference, e.g., soil

properties like pH, or classes like a soil profile class, or the presence

or absence of a soil horizon class.
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soil objects. In this paper, we argue towards quanti-

tative predictive models.

2.1. Jenny

Recalling Jenny’s (1941) famous equation, which he

intended as a mechanistic model for soil development,

S ¼ f ðc; o; r; p; t; . . .Þ:

Implicitly, S stands for soil, c (sometimes cl) repre-

sents climate, o organisms including humans, r relief, p

parent material and t time. Some have asserted its

insolubility. Nonetheless, since Jenny published his

formulation, it has been used by innumerable surveyors

all over the world as a qualitative list for understanding

the factors that may be important for producing the soil

pattern within a region. Numerous researchers have

taken the quantitative path and have tried to formalise

this equation largely through studies of cases where one

factor varies and the rest are held constant. Therefore,

quantitative climofunctions, topofunctions, etc., have

been developed. Much of this work was done before

sophisticated numerically intensive statistical methods

became available. Here are some brief examples.

(c) Sometimes (cl). Climofunctions were the ones

most developed by Jenny in his 1941 book. Jones

(1973) found relationships between carbon, nitrogen

and clay and annual rainfall and altitude in W. African

savanna using linear and multiple linear regression.

Simonett (1960) found a power–function relationship

between mineral composition of soil developed on

basalt in Queensland and annual rainfall.

(o) There seems less development of organofunc-

tions, many believing that the principal organofunction

or biofunction, that of vegetation, is dependent on soil

rather than the converse. Noy-Meir (1974) found

relationships between vegetation and soil type in S.E.

Australia. The other principal organofunction, the

anthropofunction, has only been recently quantified.

Much of the work on soil degradation and soil quality

are evidence of the effect of humanity on soil. The

classic work of Nye and Greenland (1960) is an early

quantitative example.

(r) The relationship between soil and topographic

factors has been evident at least since Milne’s (1935)

paper. Quantitative topofunctions are manifold. For

example, Furley (1968) and Anderson and Furley
(1975) found a piece-wise linear relationship between

organic carbon, nitrogen and pH of surface horizons

and slope angle for profiles developed on calcareous

parent materials around Oxford in England.

( p) Quantitative lithofunctions have not been de-

veloped often, perhaps due to a difficulty in recognis-

ing and quantifying the dependent and independent

variables. Barshad (1958) quantified mean clay con-

tent as a function of rock type.

(t) Some consider this the only truly independent

variable (but if that is the case, why is space not also

included?). Chronofunctions are often theoretical or

hypothetical rather than observed. Hay (1960), how-

ever, found an exponential relationship between clay

formation and time for soil developed in volcanic ash

on the island of St. Vincent, as would be expected

from first-order kinetics.

A lot of this early quantitative work was very well

summarised by Yaalon (1975). Many of the relation-

ships found are not linear. It should be remembered

that the aim of these investigations was to understand

soil formation and not necessarily to predict soil from

the other factors.

Recognition of interactions between the soil-form-

ing factors is potentially important because it is one

possible source of detailed soil pattern. It is difficult to

find work that considers such interactions explicitly.

Webster (1977) perhaps came closest with his canon-

ical correlation studies of sets of soil properties and

environmental factors. From this work, he suggested,

for example, that soil will reflect a strong interaction

between topography and lithology particularly on up-

per slope positions but this will be time-dependent.

Odeh et al. (1991) using closely related methods made

similar findings.

2.2. Geographic and neighbourhood (or purely

spatial) approaches

Since the late 1960s, there has been an emphasis on

what might be called geographic or purely spatial

approaches, i.e., soil attributes1 can be predicted from

spatial position largely by interpolating between soil
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observation locations. Another way of thinking about

this is as a ‘‘neighbourhood law’’, expounded first

perhaps by Lagacherie (1992), but is the basis under-

lying the soil combinations of Fridland (1972), and also

of soil geostatistics (Giltrap, 1977), etc. Generally, we

can consider the soil at some location (x,y) to depend on

the geographic coordinates x,y and on the soil at

neighbouring locations (x + u, y + v), i.e.,

sðx; yÞ ¼ f ððx; yÞ; sðxþ u; yþ vÞÞ

the dependence usually being some decreasing func-

tion of the magnitude of u and/or v.

This approach arose originally out of the need

for spatial prediction to make soil maps, and because

of a failure to obtain prediction from the soil-form-

ing factors largely because the quantitative variables

describing these factors were not readily available to do

such predictions. These purely spatial approaches are

almost entirely based on geostatistics and its precursor

trend-surface analysis, although thin-plate smoothing

splines have been suggested and used occasionally

(Laslett et al., 1987; Hutchinson and Gessler, 1994).

Exact-fitting splines do not perform well (Laslett et al.,

1987; Voltz and Webster, 1990).

2.2.1. Geostatistics and related methods

2.2.1.1. Trend surfaces—s(x,y) = f(x,y). Trend surfa-

ces are low-order polynomials of spatial coordinates.

Several applications have been reported in the litera-

ture. Davies and Gamm (1969) applied this technique

to soil pH values from the county of Kent in England.

Edmonds and Campbell (1984) described the average

annual soil temperatures at locations within a network

of stations fromVirginia and neighbouring states with a

third-degree polynomial that explained 71% of the

observed variation. On the other hand, Kiss et al.

(1988) found the spatial pattern of 137Cs activity in

well-drained, native noneroded soil in the agricultural

portion of Saskatchewan was complex, and could not

be adequately described by a second-order trend sur-

face. There appears to be no literature on trend surfaces

for soil classes. Nevertheless, Wrigley (1978) has made

an attempt to map the probability. Spatially, trend

surfaces are rather simplified ‘unnatural’ representa-

tions and more complex spatial patterns often need to

be modelled.
2.2.1.2. Kriging—s(x,y)= f(s(x+u, y+v)). It was rec-

ognised that more complex spatial patterns could be

accommodated by treating soil variables as regional-

ised variables using the methods of geostatistics, par-

ticularly, various forms of kriging. The papers by

Burgess and Webster (1980a,b) and Webster and Bur-

gess (1980) are probably regarded as the most seminal.

These kriging methods, reviewed by Burrough (1993),

Goovaerts (1999) and Heuvelink and Webster (2001),

could deal with continuous soil properties and classes,

give estimates for blocks or pixels of varying size and,

moreover, estimate uncertainty.

2.2.1.3. Co-kriging—s(x,y) = f(s(x +u, y +v),

{c,o,r,p,t}(x,y)). It was recognised early in the devel-

opment of soil geostatistics that soil could be better

predicted if denser sets of secondary variables (spatial-

ly cross) correlated with the primary variable were

available. This technique is called co-kriging. In the

early co-kriging studies (McBratney and Webster,

1983; Vauclin et al., 1983; Goulard and Voltz, 1992),

these ancillary variables were other soil variables,

indicating that other soil variables are themselves

useful predictors of soil. Later, with the advent of

GIS and improved technology, co-kriging was per-

formed with detailed secondary data sets of environ-

mental variables derived from digital elevation models

and satellite images (Odeh et al., 1994, 1995).

2.2.2. Jenny and geography—corpt or clorpt—

s(x,y)=f({c,o,r,p,t}(x,y))

An alternative spatial prediction strategy to the

purely geographic approaches was developed in the

early 1990s, although there were precursors. In these

studies, the state-factor equation was put explicitly

into a spatial framework and the factors were also

observed in the same spatial domain. This approach

probably resulted from the advent of the first geo-

graphic information systems, and also possibly as a

pedological response to geostatistics. It seems to be

based on a much earlier one-dimensional example of

using environmental (terrain, representing r) attributes

for soil prediction, namely that of Troeh (1964) and

Walker et al. (1968). Probably, the first of its kind,

Troeh (1964) analysed the elevation data from two

catenas and derived slope and profile curvature. He

then plotted the slope gradient and profile curvature

and found that the soil drainage classes could be
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distinguished by paraboloid of revolution equations.

Walker et al. (1968) used slope, curvature, aspect and

distance from the local summit, in combination with

multiple linear regression to predict soil morpholog-

ical properties such as A horizon depth, depth to

mottling and carbonates along a transect. An early,

perhaps the first, two-dimensional example is Legros

and Bonneric (1979), based on earlier work by Legros

(1975). They described a soil–environment relation-

ship using various factors (altitude, slope, exposure,

parent material) which were observed on a 500-m

grid-cell basis to predict the degree of podzolisation in

Massif du Pilat of France, and mapped it digitally at a

resolution of 500 m. The prediction was achieved by a

kind of taxonomic distance relative to reference sites.

This was done well before the advent of formal GIS.

The GIS-based studies started at the beginning of

the 1990s. Terrain analysis had improved and second-

ary rasterised layers providing a kind of complete

enumeration of the area could be put in GIS. The soil

observation points were intersected with the layers of

secondary data, a model fitted by various means, and

then themodel was used to predict all other locations on

the raster. Moore et al. (1993) gave the first two-

dimensional example using a set of terrain attributes

derived from a digital elevationmodel on a 15-m grid to

predict continuous soil properties such as A horizon

thickness and pH for a small catchment in Colorado.

Odeh et al. (1994) did a similar study in South Aus-

tralia. Skidmore et al. (1991) predicted forest soil

classes in New South Wales from layers of natural

vegetation data (representing o), and terrain attributes

on a 30-m grid. Bell et al. (1992, 1994) predicted soil

drainage class from terrain data, and Lagacherie and

Holmes (1997) predicted soil classes in the Languedoc

using layers of lithological and terrain data. Favrot and

Lagacherie (1993) foreshadowed this as a general

approach for making soil class maps.

For quantitative prediction purposes, this has been

called the ‘clorpt’ or ‘corpt’ equation (McBratney et

al., 2000). Some people have termed the approach

‘‘environmental correlation’’ (McKenzie and Austin,

1993). McKenzie and Ryan (1999) used environmen-

tal correlation associated with stratigraphy, digital

terrain models and gamma radiometric survey, respec-

tively, to predict soil properties in Australia. Ryan et

al. (2000) reviewed the concepts and applications of

spatial modelling using the ‘‘environmental correla-
tion’’ approach and used it to predict forest soil

properties at the landscape level.

For predicting soil classes, Sc, or soil properties, Sp,

often only a subset of the five soil-forming factors has

been used, e.g., when information from a digital

elevation model is available: Sc = f(r), e.g., Bell et al.

(1992), or Sp = f(r), e.g., Moore et al. (1993) or relief

and a lithology map, Sc = f(r,p), e.g., Lagacherie and

Holmes (1997), or relief and vegetation, Sc = f(r,o),

e.g., Skidmore et al. (1991).

2.2.3. Combinations—clorpt (or corpt) and kriging

Alert readers will have noted that there has been a

certain similarity and convergence between the co-

kriging and the environmental correlation approach.

Some workers recognised this in the mid-1990s and

combined the two in what is generically known as

regression kriging (Knotters et al., 1995; Odeh et al.,

1995). In this approach ‘clorpt’ is used to predict the

soil property of interest from environmental variables

and kriging is used on the residuals. Bourennane et al.

(1996) used kriging with external drift, which is related

to regression kriging but only allows for linear relation-

ships between the variable of interest and the environ-

mental variables (the external drifts).

2.3. Predicting soil attributes from other soil

attributes—s1=f(s2)

As noted above, some of the co-kriging studies

(McBratney and Webster, 1983; Vauclin et al., 1983)

showed that soil could be predicted from other soil

attributes. This observation in itself is not very useful

unless there are much denser secondary variables

available. Remote (e.g., gamma radiometrics) and

proximal sensing (e.g., electromagnetic induction) of-

fer this possibility. This becomes increasingly impor-

tant because Phillips (2001) gives several examples

where ‘clorpt’ apparently does not work, particularly at

fine resolutions. This suggests that for predictive pur-

poses s (for soil) should be added to the ‘corpt’ list.

2.4. Some brief conclusions

From this brief review, we see that:

1. Quantitative relationships have generally been

most easily found between soil topography but
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there is evidence of quantitative relationships with

the other four soil-forming or soil-altering factors.

2. In general, the relationships cannot be assumed to

be linear.

3. Little work has been done on interactions between

factors.

4. Soil can be spatially predicted from geographic

position using a variety of techniques.

5. Soil can be predicted from other soil attributes at

the same location.

6. Soil can be predicted from itself, other soil

attributes and environmental attributes at neigh-

bouring locations.

We now go on to incorporate these points in a more

generic framework for soil spatial prediction.
3. The scorpan model

Here, we generalise and formalise the approach that

has begun to emerge in papers published lately. We use

a Jenny-like formulation not for explanation but for

empirical quantitative descriptions of relationships

between soil and other spatially referenced factors with

a view to using these as soil spatial prediction func-

tions. We consider seven factors:

s: soil, other properties of the soil at a point;

c: climate, climatic properties of the environment

at a point;

o: organisms, vegetation or fauna or human

activity;

r: topography, landscape attributes;

p: parent material, lithology;

a: age, the time factor;

n: space, spatial position.

We have included soil as a factor because soil can

be predicted from its properties, or soil properties

from its class or other properties. We shall call this the

scorpan model, which can be written as:

Sc ¼ f ðs; c; o; r; p; a; nÞ or Sa ¼ f ðs; c; o; r; p; a; nÞ

where Sc is soil classes and Sa is soil attributes. The s

refers to soil information either from a prior map, or

from remote or proximal sensing or expert knowledge.

Implicit in this are the spatial coordinates x,y (and
probably not z) and an approximate or vague time

coordinate f t. This time coordinate can be expressed

as ‘at about some time t’. So explicitly, e.g.,

Sc½x; y;ft� ¼ f ðs½x; y;ft�; c½x; y;ft�; o½x; y;ft�;
r½x; y;ft�; p½x; y;ft�; a½x; y�; ½x; y�Þ:

Each factor will be represented by a set of one or

more continuous or categorical variables, e.g., c by

average annual rainfall and average annual tempera-

ture or climate class.

We shall not consider the direction of causality. For

example, many reckon vegetation to be dependent on

soil and we could write o = g(S), where o is set of

vegetation classes or percentage cover of a species, g

is some arbitrary function and S is a set of soil classes

or attributes. For our purpose, we could write S =

g� 1(o), where g� 1 is the inverse function of g, S =

g� 1(o) = f(o). We stress that the approach in general is

not theoretical; it is largely empirical—where there is

evidence of a relationship we use it. Clearly, although

we do not require causality, we should be mindful of

potential problems of nonuniqueness if g is not a

monotonic function, as it might if S is say topsoil pH

and o is the number of plants of a particular species

per unit area.

A general soil prediction model would be

Sðx; y; z; tÞ ¼ f ðQÞ

where Q is predictor variable(s). Here, we will con-

sider some restrictions in cases where S stands for

S(x,y,(z), t), i.e., the soil class or attribute at some

spatial location x, y, (z) and at some time t.

3.1. What is S? Soil classes Sc or individual soil

attributes Sa

The model must be able to predict the probability

of a set of classes, e.g., for the case of five classes,

say, A, . . ., E, the model would predict the probabil-

ity vector ( p[A], p[B], p[C], p[D], p[E]), e.g.,

Sc[x,y]=(0.01, 0.72, 0.01, 0.02, 0.25) along with some

measure of uncertainty. The problem will generally

consist of a preexisting soil class label (from some soil

classification system) at each soil observation location

and a set of colocated environmental variables. These

are called the training data. This represents a super-

vised classification or supervised learning problem.



Table 2

Useful combinations of predictor and predicted attributes (*)

Predicted S Predictor

Class Continuous Fuzzy Mixed

Hard Fuzzy

Hard class, Sch *

Fuzzy class, Scf * *

Continuous, Sph * * * *

Fuzzy, Spf * * * *

Mixed, Spm * * * *
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More rarely, unsupervised learning, also known as

numerical classification, may be used on observed soil

attributes to first generate the class labels. The super-

vised learning rules are fitted using the training data,

and then used at other locations where only environ-

mental variables are observed.

Alternatively, the model should be able to predict

individual soil attributes Sa along with a measure of

uncertainty. The Sa might be the value of a given soil

attribute at a certain depth, e.g., the clay content at 60

cm, i.e., Sa[x,y] = 310 g/kg, along with an uncertainty

measure. Similarly to the class problem, this will

generally consist of a measured soil attribute at each

soil observation location and a set of colocated

environmental variables. These are the training or

calibration data. This represents a generic (multiple)

regression problem. The generic regression equations

or rules are fitted using the calibration data and are

then used at other locations where only environmental

variables are observed.

We shall not consider the case Sa = f(s), with no

spatial consideration—these are the so-called and very

useful pedotransfer functions (PTF). Much work has

been done on these and it has been reviewed else-

where (Wösten et al., 2001; McBratney et al., 2002).

This point is further elaborated in Section 5.3.1.) As

we shall see the form of f for pedotransfer functions

and our soil spatial prediction functions (SSPF) are

not unrelated.

Heuvelink and Webster (2001) have discussed the

merger of discrete and continuous models of spatial

variation. Heuvelink (1996) suggested the mixed

model of spatial variation, in which the soil property

is treated as the sum of a global mean, a class-

dependent deviation from the mean and a spatially

correlated residual. Prediction with this model boils

down to kriging with an external drift (Delhomme,

1978), which in this case is a classification. Its main

advantage is that it performs well over the whole

range of spatial variation, from exclusively discrete

realities. A more general interpretation of this kind of

idea, and the one we use here is that the external drift

represents f() and can be any kind of function. The

discreteness or continuity of S will depend on the

magnitude and form of f(). In the Heuvelink (1996)

case, the f() is a one-way analysis of variance model, a

special case of a generalised linear model (McCullagh

and Nelder, 1983; Lane, 2002).
3.2. The general approach

If we write the equation as S = f (Q) + e, then the

general approach we shall use is to take some obser-

vations of S in the field at known locations [x,y] and fit

some kind of function a set of pedologically meaning-

ful predictor variables Q which will be generally raster

data layers of sizeM in a GIS. Once the model is fitted

at the m observation points, the prediction can be

extended to the M points or cells in the raster thereby

giving a digital map. The efficiency of the method

relies on the fact that hopefullymbM, and because S is

much more difficult and expensive to measure than the

Q. The success will depend on:

1. Having sufficient predictor variables observed

everywhere or at least with a relatively high data

density.

2. Having enough soil observations (data points) to fit

a relationship.

3. Having functions f() flexible enough to fit a

nonlinear relationship.

4. Having a good relationship between the soil and its

environment.

Followed by a discussion of quantitative proce-

dures for fitting f() in Section 3.3, we present some

considerations concerning e in Section 3.4, and a

review of previous studies in Section 3.5.

3.3. Form of f()

f() is some form of empirical quantitative function f

linking S to the scorpan factors (). There are different

combinations of predictors and predicted variables

that can be summarised in Table 2. If soil classes Sc,

are to be predicted, they can be hard or fuzzy. For the
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prediction of soil attributes, the variables can be

continuous, fuzzy or mixed. The * symbols in the

table represents efficient prediction of S from the

given predictors (McBratney et al., 2002).

We will now discuss some forms of f(), most, but by

no means all, of which have been or can be used for this

kind of problem. For the sake of brevity, we shall not

delve deeply into the mathematics of the methods. The

advance in statistical learning techniques, enhanced by

the growing need in data mining, has aided the use of

different forms of f() in soil science. Recent develop-

ments and technical details of the statistical modelling

have been recently and extensively reviewed by Hastie

et al. (2001). When predicting soil classes some kind of

supervised classification will be used, and for soil

attributes some kind of generic regressionwill be used.

These are now discussed.

3.3.1. Linear models

Linear models include regression for predicting

soil attributes, and classification for predicting soil

classes. Linear regression included in this section is

linear models using ordinary or generalized least

squares. Linear methods for classification include

discriminant analysis. The theory can be found in

Hastie et al. (2001).

3.3.1.1. Ordinary least squares. For multiple linear

regression, the model is written as:

s ¼Qbþe

where s is the vector of response (predicted soil

attribute), Q is the matrix of predictor variables and

b is parameter vector of the linear function. The error

component, e represents of the deviations of the

model to the observed value. The parameter is usually

solved using ordinary least squares (OLS), with

assumptions that e:

1. is independently and identically distributed (in-

dependence assumption),

2. have zero mean and finite variance (homoscedas-

ticity assumption) and

3. is normally distributed (normality assumption).

OLS has been used widely in prediction of soil

attributes because of the easiness and wide availability.

The predictors are usually continuous variables. How-
ever, qualitative factors or discrete variables can also be

integrated. This involves coding the factor of K levels

into K� 1 variables. Such coding is automatically

generated in statistical packages such as S-Plus.

3.3.1.2. Principal component regression and partial

least squares. When large number of correlated

predictor variables are present (such as electromag-

netic spectra), principal component analysis is usu-

ally used to produce linear combinations of the

original inputs. Selected principal components are

then used in place of the original predictors. Alter-

natively, partial least squares (PLS) (Martens and

Naes, 1989) are developed which constructs a new

set of components as regressor variables which are

linear combination of the original variables. Unlike

principal component regression which only used the

combination of the predictors, the components in

partial least squares are determined by both the

response variable(s) and the predictor variables.

Principal component regression and PLS have been

used quite extensively in predicting soil attributes from

electromagnetic spectrum, especially in the near- and

mid-infrared ranges (such as Chang et al., 2001). This

method may be necessary if the environmental cova-

riates consist of hyperspectral imagery.

3.3.1.3. Linear discriminant analysis. Discriminant

analysis (Fisher, 1936) is the seminal supervised

learning technique. It has been applied in soil science

for more than 60 years. The first application was by

Cox and Martin (1937) in which discriminant anal-

ysis was used to determine whether chemical prop-

erties give significant information on the presence of

Azotobacter in soil. Webster and Burrough (1974)

used the method to allocate soil observations into

existing classes. Henderson and Ragg (1980) em-

ployed a multivariate logistic method to assess the

usefulness of soil properties for distinguishing be-

tween taxonomic units. The method was perhaps first

used for digital soil mapping by Bell et al. (1992,

1994) who related soil drainage classes to landscape

parameters, and used the resulting discriminant func-

tions for spatial predictions. Other examples can be

seen in Table 3.

The theory is readily accessible in Webster and

Oliver (1990) and Hastie et al. (2001). Triantafilis et al.

(2003) have generalised the theory to a fuzzy linear



Table 3

Summary, in chronological order, of previous quantitative scorpan-like studies in which soil classes and/or attributes were spatially predicted

Soil Predictive Predictive factors Study No. of Grid distance (m) Location Authors Scale of Study

Sclass Sattribute
model ( f )

s c o r p a n
area

spatial

extent

observations
Soil sample Image

map

produced

(1:x)

area

(km2)

Soil drainage

classes

Linear regression � D3 USA Troeh (1964)

Soil horizon

thickness,

subsoil mottle,

depth to mottle

Linear regression � D1 90 10 USA Walker et al.

(1968)

0.007

Soil classes Discriminant

analysis

� D3 30 1000 USA Pavlik and

Hole (1977)

450, 250

Soil classes Degree of

podzolisation

Modified

principal

component

analysis

(Escoufier, 1970)

� � D4 38 500 France Legros and

Bonneric (1979)

500,000 624

Thickness of

A horizon,

depth to CaCO3

Discriminant

analysis, linear

regression

� D2 522 10, 50 10,

50

Canada Pennock et al.

(1987)

Soil classes Clustering � � D2 USA Lee et al.

(1988)

Organic C, Fe/C Clustering and

regression

� D2 32 USA Frazier and

Cheng (1989)

500

Organic C, P Regression,

kriging

� � D2 172 15 15 USA Bhatti et al.

(1991)

0.26

Soil

morphological,

physical and

chemical

properties

Ordination

techniques

� � D2 194 2, 8 10 Australia Odeh et al.

(1991)

10,000 0.26

Soil classes � � D2 194 2, 8 10 Australia Odeh et al.

(1992)

10,000 0.26

Soil drainage

classes

Discriminant

analysis

� � D3 305 USA Bell et al.

(1992, 1994)

Clay content,

CEC, EC, pH,

bulk density,

COLE, h
at � 10 and

� 1500 kPa

Ordination,

GLM

� � D3 224 300 100 Lower

Macquarie

Valley,

Australia

McKenzie and

Austin (1993)

100,000 500
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Horizon

thickness,

OM, pH,

extract. P,

silt, sand

Linear regression � D2 231 15 15 Australia Moore et al.

(1993)

15,000 0.054

Soil series Rule induction � � D2 Digital

soil map

25 New

Zealand

Dymond and

Luckman

(1994)

15,000

Depth to

solum, depth

to bedrock,

topsoil gravel,

subsoil clay

Linear regression,

kriging,

co-kriging,

regression

kriging

� x D2 194 2, 8 10 Australia Odeh et al.

(1994, 1995)

10,000 0.26

OM Linear regression � � � D3 194 1000 France Arrouays et al.

(1995)

1,000,000

Horizon depth,

presence of E

horizon

GLM � D3 60 500 10 Australia Gessler et al.

(1995)

100,000 100

Horizon depth Kriging,

co-kriging,

regression

kriging

� x D2 539, 117 35 Netherlands Knotters et al.

(1995)

0.97

Soil properties Expert/

rule-based

system

� D2 231 15 15 Australia Cook et al.

(1996a)

15,000 0.054

Soil parent

material

Clustering � D3 70 Australia Cook et al.

(1996b)

200

Soil units Bayesian and

expert system

rules

� � � D2 53 95,

110

10 Australia Skidmore et al.

(1996)

15,000 0.79,

1.28

Soil available

water capacity

Linear regression � D2, D3 USA Zheng et al.

(1996)

Soil drainage

classes

Classification

tree

� � D2 Digital

soil map

12 10 USA Cialella et al.

(1997)

12,000 24

Soil fertility

classes

Fuzzy logic � D3 384 750 Philippines Dobermann and

Oberthur (1997)

250,000 192

Soil classes Classification

tree

� � D2 Digital

soil map

50 50 France Lagacherie and

Holmes (1997)

50,000 35

pH, EC, av.P,

ex. K, ex. Ca,

ex. Mg, Total N,

total P

Linear regression � � D2 103 50 10 Australia Skidmore et al.

(1997)

15,000 0.18

Hydromorphic

Index

Linear regression � D2 143 10–20 10 USA Thompson et al.

(1997, 2001)

(continued on next page)
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Soil Predictive Predictive factors Study No. of Grid distance (m) Location Authors Scale of Study

Sclass Sattribute
model ( f )

s c o r p a n
area

spatial

extent

observations
Soil sample Image

map

produced

(1:x)

area

(km2)

Wilting point Kriging � � D3 426 100,

141,

200

200 France Voltz et al.

(1997)

100,000 17, 36

Soil series A horizon

depth

Fuzzy logic

and expert

system

� � � D2 64 30 USA Zhu and Band

(1994);

Zhu et al.

(1996, 1997,

2001)

30,000 36

Transmissivity Fuzzy logic

and expert

system

� � D1 32 Australia Zhu et al.

(1997)

5.5

Soil classes Decision trees,

Bayesian model

� � D4 Digital

soil map

100,

2000

250 Australia Bui et al.

(1999)

250,000 1300

Organic C Look-up table,

Bayesian rule

� D3 72 2000 Lilburne et al.

(1998)

130,000 260

Soil depth,

P total,

C total

GLM,

Regression tree

� � � D3 165 25 Australia McKenzie and

Ryan (1999)

500

Soil texture

classes

Ordinary kriging,

indicator kriging,

indicator kriging

with soft

information

� � D3 384,

208

750,

2000

250,

250

Philippines,

Thailand

Oberthur et al.

(1999)

100,000 192,

390

Soil depth Discriminant

analysis

� � D2 2448 50 12.5 Germany Sinowski and

Auerswald

(1999)

1.5

Soil classes GLM

(Discriminant

Analysis)

� � D3 120,

100

50 France Thomas et al.

(1999)

100,000 60

Soil organic C Linear regression � � � 745 10 25 USA Bell et al.

(2000)

Thickness of

horizon

Kriging with

external drift

� � D2 219 20 France Bourennane

et al. (2000)

20,000 0.38

Hydromorphic

Index

Kriging,

co-kriging

� � D1 182 10 10 France Chaplot et al.

(2000)

0.02

Soil classes GLM

(discriminant

analysis)

� � D4 1236 1000,

100

Hungary Dobos et al.

(2000)

500,000,

1,000,000

93,000
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Wilting point Conditional

probabilities,

kriging

� � D3 374 200 10 France Lagacherie and

Voltz (2000)

100,000 20

Clay content,

CEC

GLM, GAM,

regression trees,

neural networks,

kriging,

co-kriging,

regression kriging

� � � D1,

D2,

D3

95,

180,

734

2800 2,

200,

500

Australia McBratney et al.

(2000)

2000,

200,000,

500,000

0.42,

1100,

45,600

Horizon depth

and chemical

properties

ANOVA � D3 72 2000 New

Zealand

McIntosh et al.

(2000)

130,000 260

Clay content Linear regression,

regression kriging

� � D3 1000 Australia Odeh and

McBratney

(2000)

Soil depth,

C, P density,

site water

capacity

Regression trees

and GLM

(multiple

regression)

� � � � D3 50, 165 Australia Ryan et al.

(2000)

Soil series A horizon depth ANN � � � D2 64 30 USA Zhu (2000) 36

CEC GAM, regression

tree, linear

regression,

kriging

� � � � D1 113 5 Australia Bishop and

McBratney

(2001)

5000 0.74

Soil classes Decision tree � � � D4 Digital

soil maps

250 Australia Bui and

Moran (2001)

250,000 1,058,000

Soil units Discriminant

analysis

� � 1000 1000 Part of

Europe

Dobos et al.

(2001)

1,000,000 1,650,000

Thickness of

horizon

Correlation � D2 160 10–20 10 USA Park et al.

(2001)

0.9

Organic C,

N2O

emission

Landform

segmentation

� D2 99 25 10 Canada Pennock and

Corre (2001)

Soil classes Fuzzy

classification

� D4 600 200 Czech

Republic

Boruvka et al.

(2002)

200,000 1327

Soil drainage

classes

Logistic regression � � D3 295 + 72 25 Nigeria Campling et al.

(2002)

50,000 589

Soil horizon

and soil

classes

Fuzzy logic � � � D3 Rast.

soil map

10 20,

25

France Carre and

Girard (2002)

100,000 1054

Hydromorphic

Index

Logistic regression � D3 141 + 41 +

54 + 162 +

308

30 France Chaplot and

Water (2002)

30,000
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A
.B
.
M
cB

ra
tn
ey

et
a
l.
/
G
eo
d
erm

a
11
7
(2
0
0
3
)
3
–
5
2

1
5



Soil Predictive Predictive factors Study No. of Grid distance (m) Location Authors Scale of Study

Sclass Sattribute
model ( f )

s c o r p a n
area

spatial

extent

observations
Soil sample Image

map

produced

(1:x)

area

(km2)

Soil moisture,

residual P,

solum

thickness,

depth to

CaCO3, OC

Linear regression � D2 210 21 15 Canada Florinsky et al.

(2002)

0.67

Soil OC content Linear regression � D2,

D3,

D5

15,

1000,

5 min

Canada Florinsky and

Eilers (2002)

0.64,

16,206,

2,450,000

pH, organic

matter

Linear regression � � � D4 2350 10,000 1000 Croatia Hengl et al.

(2002)

1,000,000 56,000

Soil drainage

classes

Discriminant

analysis, logistic

discriminant

� � 107 50 10 USA Kravchenko et al.

(2002)

0.02

Soil subgroups

and groups

Lattice graphs,

ANN

� � D3 2294 25 50 UK Mayr et al.

(submitted for

publication)

50,000 100

Soil classes ‘Boosted’

classification

tree

� � D4 Digital

soil map

250 Australia Moran and

Bui (2002)

250,000 1300

Silt, ECEC,

TEB, Mn,

oxided

ANN, regression

tree, GLM

� � � D1 502 25 10 UK Park and

Vlek (2002)

0.03

Soil drainage

class

Supervised

classification

� � � D2 49 10 USA Peng et al.

(in press)

0.057

Surface gravel

content

GLM, GAM,

Reg.Tree,

combined with

regression

kriging

� � � D3 USA Scull et al.

(in press)

800

Available water

capacity

Rule-based � � � � D2 5 Germany Sommer et al.

(2003)

0.1

Topsoil

thickness,

pH, organic

matter

GLM and

regression-

kriging

� D4 135 10,000 1000 Croatia Hengl et al.

(in press-b)

1,000,000 56,000
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discriminant analysis. This considers the a priori

membership of each individual to each of the classes.

3.3.2. Generalised linear models

Generalised linear models (GLMs) extend the

linear regression models to accommodate with the

nonnormal response distributions (Hastie and Pregi-

bon, 1992). The theory and applications in soil

science has been reviewed by Lane (2002).

Usually, to accommodate for nonlinearity, trans-

formation of variable is introduced, GLM attempt to

modify the model rather than transforming the data

(Lane, 2002). GLMs have the assumption of inde-

pendence between the response and predictor vari-

ables. The predictor variables q may influence the

distribution of the predicted soil attribute S through

a single linear function called linear predictor: g ¼Pp
j¼1 bjqj.

GLMs consist of two functions:

1. (i) A link function that describes how the mean

depends on linear predictors.

l ¼ mðgÞ

g ¼ m�1ðlÞ ¼ S ðlÞ

where S (.) is the link function.

2. (ii) A variance function that captures how the

variance of the response depends upon the mean:

l ¼
Z

g:

The form of the link and variance function depends

on the distribution of the response (McCullagh and

Nelder, 1983).

The response distribution could be Gaussian, bi-

nomial, poisson or others, and each distribution func-

tion allows a variety of link functions, such as logit,

probit, inverse (Venables and Ripley, 1994).

Various models can be derived from this general-

isation by specifying the appropriate link function.

For example, multiple linear regression corresponds to

an identity link function, constant variance and a

normal distribution. Logistic regression is a form of

GLM where we wish to model the posterior proba-

bilities of the K classes via linear functions of the
predictors x and also ensure that they sum to unity

within the range [0,1]. The model has the form:

PrðG ¼ c j X ¼ qÞ ¼ expðbc0 þ bT
c qÞ

1þ
XK�1

l¼1

expðbl0 þ bT
l qÞ

;

c ¼ 1; . . . ;K � 1:

The model is usually fitted by maximum likelihood

(Hastie et al., 2001).

Co-kriging, which is a case of general spatial linear

model, is discussed under its own heading in Section

3.4.2.2 below.

3.3.2.1. Prediction of continuous soil attributes

Sa. McKenzie and Austin (1993) used generalised

linear models to predict soil attributes (clay content,

CEC, EC, pH, bulk density and COLE) using envi-

ronmental variables (geomorphic unit, local relief,

etc.) as predictors. Other examples include Odeh et

al. (1995, 1997) and McKenzie and Ryan (1999), who

used GLMs to predict nonnormally distributed contin-

uous variables. In both of these cases, the GLM was

used in preference to standard linear regression be-

cause of the nonnormal distribution of the response

variable. Park and Vlek (2002) found that GLMs

performed better than neural networks and regression

trees in predicting soil attributes from environmental

variables.

3.3.2.2. Prediction of soil classes Sc. Gessler et al.

(1995) used GLMs to predict the presence or absence

of a bleached A2 horizon using digital terrain infor-

mation. In this case, a logit link function was used due

to the binomial distribution. Campling et al. (2002)

used (multiple) logistic regression to model soil drain-

age classes from terrain attributes and vegetation

indices as calculated from a Landsat TM image.

3.3.3. Generalised additive models

Generalised additive models (GAMs) attempt to

characterise the nonlinear effect which is not consid-

ered in generalised linear models. GAMs have the

form:

S ¼ a þ
Xp
j¼1

fjðqjÞ þ e
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where f are nonparametric ‘smoothing’ functions. The

smoothing functions can be splines, loess, kernel and

other smoothers (Venables and Ripley, 1994).

Smoothers fit the data locally and crucial to the fit

is the size of the local neighbourhood, which is

generally controlled by a smoothing parameter. The

smoothing parameter controls the variance-bias trade

off. A large neighbourhood produces estimates with

low variance and potentially high bias, a small neigh-

bourhood produces the reverse effect (Hastie and

Tibshirani, 1990).

The use of GAMs in the soil science literature has

been minimal. One of the few studies has been Odeh

et al. (1997), who compared GAMs with GLMs and

linear regression for the prediction of organic carbon

with digital terrain information as secondary informa-

tion. GAMs were found to be superior. Bishop and

McBratney (2001) used GAMs for the mapping of

soil cation exchange capacity from environmental

factors (terrain attributes, bare soil colour aerial pho-

tograph, bare soil LANDSAT imagery, crop yield data

and soil apparent electrical conductivity).

3.3.4. Tree models—classification and regression

The term machine learning has been identified with

(a) an expert system whereby rule-based software

is built from sample cases volunteered inter-

actively (Section 3.3.10) and

(b) as a method of data analysis whereby rule-

structured classifiers is built from a ‘‘training

set’’ of preclassified cases (Feng and Michie,

1994).

We discuss the latter here. An early practical

application is by Michalski and Chilauski (1980),

who generated an automatic rule-based classifier for

identifying soybean diseases from plant morphologi-

cal description.

Rather than fitting a model to the data, a tree

structure is generated by partitioning the data recur-

sively into a number of groups, each division being

chosen as to maximise some measure of difference in

the response variable in the resulting two groups. It

can handle both categorical and continuous data, for

prediction of discrete soil classes or continuous soil

attributes. The advantage of regression trees over

linear model is the ability to deal with nonlinearity.
In addition, they require no assumptions about the

data and able to deal with nonadditive behaviour,

while other regression methods require interactions

to be prespecified (Breiman et al., 1984). Using a

decision algorithm, the tree model decides automati-

cally the splitting variables and splitting points, and

also the shape (topology) of the tree. A popular

method for classification and regression trees is called

CART (Breiman et al., 1984).

The main advantage of tree models is they are easy

to interpret as opposed to methods like GLMs, GAMs

and neural networks (Clark and Pregibon, 1992).

Because of this, regression trees have been widely

used for the prediction of soil attributes and more

recently for prediction of crop yield for site-specific

management (Shatar and McBratney, 1999).

3.3.4.1. Prediction of continuous soil attributes

Sa. This is called a regression tree. Pachepsky et

al. (2001) used regression tree to predict sand and silt

contents and water retention from terrain attributes

(slope, curvature). Lapen et al. (2001) study the

relationships between maize grain yields and manage-

ment practice, soil strength/compaction and soil nu-

trient status.

One of the limitations in regression tree is the

discrete predictions from each terminal node, which

resulted in the lack of smoothness of the prediction

surface. This can result in unrealistic representations

of soil variability if the tree has a small number of

terminal nodes (McKenzie and Ryan, 1999). An

improvement to the regression trees is to build mul-

tivariate linear models in each node (leaf). This type

of model, which is analogous to using piecewise

linear functions, has been implemented in the program

Cubist (RuleQuest Research, 2000). To further im-

prove the prediction, we could apply fuzzy member-

ships to allow a smoother transition from one class to

another (Jang, 1993, 1997).

3.3.4.2. Prediction of soil classes Sc. This is called a

decision tree or a classification tree. The binary

decision-tree algorithm uses a binary split which has

exactly two branches at each internal node. There are

different decision trees methods. The most commonly

used is CART (Breiman et al., 1984). Lagacherie and

Holmes (1997) discussed the application of CART for

soil classification and its sensitivity to error. Another
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popular algorithm is C4.5 (Quinlan, 1992) and its later

version See5 (Rulequest Research, 2000). Bui and

Moran (2003) utilised this program for mapping soil

classes across the Murray–Darling Basin in eastern

Australia. Moran and Bui (2002) refined the analysis

of Bui et al. (1999) by using a ‘boosted’ tree (see

Section 3.3.8) to reduce the classification error.

Zighed and Rakotomalala (2000) generalise deci-

sion trees into decision graphs using the SIPINA

algorithm (Zighed, 1985) and the Fusbin and Fusinter

discretisation methods (Zighed et al., 1996) where a

new operator, called ‘‘merge between leaves’’, is intro-

duced during the growing process. This approach was

employed by Mayr et al. (2003).

3.3.5. Neural networks

Neural networks attempt to build a mathematical

model that supposedly works in an analogous way to

the human brain. Neural networks have a system of

many elements or ‘neurons’ interconnected by com-

munication channels or ‘connectors’ which usually

carry numeric data, encoded by a variety of means and

organised into layers. Neural networks can perform a

particular function when certain values are assigned to

the connections or ‘weights’ between elements. To

describe a system, there is no assumed structure of the

model, instead the networks are adjusted or ‘trained’

so that a particular input leads to a specific target

output (Gershenfeld, 1999). The mathematical model

of a neural network comprises of a set of simple

functions linked together by weights. The network

consists of a set of input units, output units, and

hidden units, which link the inputs to outputs. The

hidden units extract useful information from inputs

and use them to predict the outputs.

Neural networks are now widely used in the soil

science literature, mainly for predicting soil attributes.

The application of neural networks as pedotransfer

functions for predicting soil hydraulic properties is the

most common.

3.3.5.1. Prediction of continuous soil attributes

Sa. The application in predicting soil hydraulic

properties in the form of pedotransfer functions can

be found in many studies such as Minasny and

McBratney (2002). Chang and Islam (2000) predict

soil texture from multitemporal remotely sensed

brightness temperature and soil moisture maps.
3.3.5.2. Prediction of soil classes Sc. Neural net-

works can be used to predict the probability of

classes using multi-logit transformation of the output.

Another type of network is called self-organising

maps (SOM, in this case, not soil organic matter)

(Kohonen, 1982). Kohonen’s network is an unsuper-

vised classification splitting input space into patches

with corresponding classes. It has the additional

feature that the centres are arranged in a low dimen-

sional structure (usually a string, or a square grid),

such that nearby points in the topological structure

(the string or grid) map to nearby points in the

attribute space.

Zhu (2000) used neural networks to predict the

probability of soil classes from soil environmental

factors. Fidêncio et al. (2001) applied two types of

neural networks (radial basis function networks and

self-organising maps) to classify soil samples from

different geographical regions in Sao Paulo, Brazil

by means of their near-infrared (diffuse reflectance)

spectra.

3.3.6. Fuzzy systems

Fuzzy systems attempt to represent the uncertainty

in the predictor and predicted attributes or classes.

Fuzzy inference systems map a given input to an

expected output using fuzzy logic. The most com-

monly inference system used are the Mamdani and

the Sugeno type, which are described in Jang (1997).

The steps usually involve fuzzifying the ‘hard’ input

variables, define the rule or fuzzy operator, apply an

implication method, aggregate the outputs, and

defuzzify the outputs. Dobermann and Oberthur

(1997) used fuzzy logic to produce a soil fertility

map for rice from soil variables. Zhu (1997) repre-

sent a soil at a given location with a vector of

membership values (or so called Soil Similarity Vec-

tor) to the existing soil classes. Zhu et al. (1996) and

Zhu et al. (1997) used fuzzy logic to infer the

membership of a soil to particular classes from the

environmental variables, such as parent material,

elevation, aspect, gradient, profile curvature and can-

opy coverage.

The model Adaptive Neuro-Fuzzy Inference Sys-

tems (ANFIS) (Jang, 1993) is analogous to neural

networks and can be used to predict continuous

variables. McBratney et al. (2002) give an example

for predicting hydraulic conductivity.
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3.3.7. Other methods

Genetic algorithms (GA) (Goldberg, 1989) are

randomised search and optimisation techniques guid-

ed by the principles of biological evolution and

natural genetics. They have been used mainly in

optimisation of large multidimensional problems.

Pal et al. (1998) developed a GA classifier and

applied it to satellite imagery (Pal et al., 2001). It

attempts to approximate the class boundaries of a

data set with a fixed number of hyperplanes in such

a manner that the associated misclassification of data

points is minimised. Maulik and Bandyopadhyay

(2000) proposed a genetic algorithm for unsuper-

vised classification.

Various models used in data mining are also avail-

able such as Multivariate Adaptive Regression Splines

(MARS) to model continuous variables (Friedman,

1991; Hastie et al., 2001). MARS has been used

by Shepherd and Walsh (2002) to build prediction

equations for eastern Africa for a number of soil

properties from NIR diffuse reflectance spectra. An-

other data mining tool made available recently is

TreeNet (Friedman, 1999; http://www.salford-systems.

com/treenet.html), which forms a network with sev-

eral dozen to several hundred small trees, each

typically no larger than two to eight terminal nodes.

The model is analogous to a long series expansion,

such as a Fourier or Taylor’s series, where a sum of

factors becomes progressively more accurate as the

expansion continues.

3.3.8. Strengthening models: bagging, boosting

There has recently been empirical evidence that the

accuracy of f() prediction can be enhanced by gener-

ating multiple models and aggregating them to pro-

duce an estimate. There are two renowned approaches

for producing and using several models that are

applicable to a wide variety of statistical learning

methods. Bootstrap aggregating or bagging (Breiman,

1996) and boosting (Freund and Schapire, 1996)

manipulate the training data in order to generate

different models. These methods arise more naturally

in the supervised classification problem, but they can

be extended to generic regression.

Bootstrap methods (Efron and Tibshirani, 1993)

assess the accuracy of a prediction by sampling the

training data with replacement. Suppose the training

data is composed of predictors Q and response S of
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size N, we draw B datasets each of size N of the

training data by sampling with replacement. For

each of the bootstrap dataset Zb, b = 1, 2, . . ., B,

we fit model f̂ b( q). The bagging estimate is calcu-

lated as:

f̂bagðqÞ ¼
1

B

XB
b¼1

f̂ bðqÞ:

Boosting combines the outputs of many ‘‘weak’’

models to produce a powerful ‘‘committee’’. Boosting

uses all the data at each repetition, but maintains a

weight for each instance in the training set that reflects

its importance. Adjusting the weights causes the

model to focus on different data, hence leads to

different models. The multiple models are then aggre-

gated by voting to form a composite model. In bag-

ging, each component model has the same vote, while

boosting assigns different voting strengths to compo-

nent classifiers on the basis of their accuracy. Moran

and Bui (2002) used boosting to improve their digital

soil map of the Murray–Darling basin. A popular

algorithm for supervised classifiers is known as Ada-

Boost (Freund and Schapire, 1997).

3.3.9. Expert (knowledge-based) systems

Expert systems (Dale et al., 1989) are ways of

harvesting and engineering knowledge. Bui (2003)

argues that soil maps and their legends are represen-

tations of structured knowledge, namely the soil

surveyor’s mental soil– landscape model. Methods

which can make such models explicit from previously

surveyed areas are potential ways of producing f() for

classes. Bui (2003) and Wielemaker et al. (2001)

suggest methodological frameworks to formalise the

landscape knowledge of the soil surveyor is by

structuring terrain objects in a nested hierarchy fol-

lowed by inference and formalisation of knowledge

rules. The principal attempts to formally make such

knowledge rules are Prospector (Duda et al., 1978),

Expector (Skidmore et al., 1991; Cook et al., 1996a),

and Netica (http://www.norsys.com/netica.html).

The Expector approach described by Cook et al.

(1996a) and Corner et al. (1997). Expector builds on

existing soil surveyor knowledge to construct quanti-

tative statements about individual soil properties via

the development of a network of rules. These rules

operate within a system of Bayesian inference to

 http:\\www.salford-systems.com\treenet.html 
 http:\\www.norsys.com\netica.html 
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assign the varying probability of occurrence of a soil

property of interest within an area, given evidence that

relates to it in a known way. Permissible evidence

includes the range of attributes normally used by a soil

surveyor, such as landform, vegetation, land use, or

parent material, and can also include remotely sensed

digital data. Evidence is weighted according to the

uncertainty associated with it, and combined to pro-

duce a single estimate of probability of a given

attribute. The relationship between the evidence and

prediction is stated explicitly at each stage of the

procedure and is, thus, repeatable in a consistent

manner. Expector generates maps showing the prob-

abilities of each hypothesis class. Expector was used

by Lilburne et al. (1998) to predict topsoil carbon

class from elevation (r), plan curvature (r), solar

radiation (c derived from r), soil order (s) and vege-

tation class (o). Clearly these methods grade into

some of the ones described above. Expector is prob-

ably closer to the methods above than it is to a pure

soil surveyor knowledge-based approach.

3.3.10. Unsupervised classification

In the previous sections, when we were discussing

classes, we were considering ‘supervised classifica-

tion’. This is also known as allocation or identifica-

tion. This is where we wish to produce prediction

equations for placing soil existing soil classes, such as

a particular categorical level in a national or interna-

tional classification system. However, we may first

wish to make new classes from the observed soil

properties. This is known as unsupervised classifica-

tion. Much of the early work on pedometrics, in the

1960s, focussed on this topic. The numerical classifi-

cation methods that have been used quite extensively

in soil science more recently are k-means and fuzzy

k-means (Odeh et al., 1992; de Bruin and Stein,

1998; Triantafilis et al., 2001). There is also a semi-

supervised classification considering classification in

the presence of some labelled data (Pedrycz and

Waletzky, 1997).

Unsupervised classification is an option for making

digital soil class maps, particularly where the national

or international scheme does not project well onto the

soil–landscape. However, once the new classes have

been established at the soil observation locations, then

one of the previous methods, inter alia discriminant

analysis, multiple logistic regression, regression trees,
needs to be applied to fit equations and then make

predictions from environmental covariates at the other

locations where no soil properties have been observed.

Carré and Girard (2002) used a continuous method

for horizon and profile classification called OSACA.

This was based mainly on field soil morphological

attributes. Their method is unique in that it models the

taxonomic distance to each of the class centroids at

each observation site. Because these distances are

continuous variables multiple linear regression on

environmental variables was used as the ‘supervised

classification’ step. One regression equation was de-

veloped for each class and the distances predicted at

each site on their prediction raster.

3.4. Spatial considerations

The older corpt approach has no intrinsic or formal

spatial component other than the functions are pre-

dicted in a spatial context, i.e., spatial position is not

taken into consideration. This seems unwise for a

mapping application. Spatialisation can be introduced

by considering spatial components of the environmen-

tal and soil variables (Section 3.4.1) and by perpend-

ing the spatial correlation structure of the residuals

(Section 3.4.1), as was briefly discussed in Section

3.3.1.

3.4.1. Decomposition of Q factors into spatial

components

All of the methods described above find or induce

relationships between soil S and the predictor varia-

bles Q. Potentially, each of the seven scorpan factors

(with the possible exception of n?) can be described

by a series of mapped spatial variables. Each of these

variables can be decomposed into separate spatial

components and mapped separately. Two ways to do

this is by factorial kriging analysis (Bourgault, 1994;

Wen and Sinding-Larsen, 1997; Oliver et al., 2000)

and wavelets (Garguet-Duport, 1997; Zhu and Yang,

1998; Carvalho et al., 2001). Both methods decom-

pose the separate variables into separate hierarchical

spatial components of decreasing spatial resolution.

The factorial kriging method assumes stationarity but

the wavelet method does not require this. On the other

hand, the factorial kriging method finds the scale of

the components from the observations, whereas in

wavelets the various scales are dictated by the size of
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the image, i.e., the scales are increasing powers of 2

pixels. These components could all be derived and

used as separate layers in the fitting of s. It is more

than likely that the short spatial range components

(e.g., the nugget component) might not relate to soil

and can be removed. In a quite a different application

Oliver et al. (2000) found that land use was related to

a long-range spatial component in SPOT imagery and

not to two shorter-range components. Lark et al.

(2003) regressed soil properties on the wavelet com-

ponents of proximally sensed soil electrical conduc-

tivity data.

3.4.2. Structure in e-generalised least squares and

geostatistics

It would be naı̈ve to imagine that there is no spatial

structure in e. If e has a spatial structure, then

generalised least squares or geostatistics can be ap-

plied. Why would e have a spatial structure? The

answers could be:


 scorpan is incorrect.

 Attributes used to describe scorpan are inadequate.

 Interactions are misspecified.

 Form of f() is misspecified.

 Something intrinsic—such as spatial diffusion,

interaction or inhibition processes.

Variograms of the fitted parts of the soil spatial

prediction functions for the various factors will be

instructive in elaborating these possibilities.

3.4.2.1. Generalised least squares. In generalised

least squares (GLS) (Cressie, 1993): s=Qb + e; errors

e belong to multivariate normal distribution with

mean 0 and covariance matrix V: N(0, V). For spatial

data, it can be further simplified assuming the error is

homogenous with variance r2, thusm V can be

replaced by r2C, where C is the correlation matrix

of the errors (Lark, 2000). For spatial data, the

correlation matrix of the residuals can be computed

from the semivariogram:

Cij ¼ 1� ĉ*ðdijÞ
r2

where ĉ* is a semivariogram function (which will

produce a positive definite correlation matrix), dij is
the Pythagorean distance between the ith and jth

points. The log-likelihood criterion function for GLS

then is:

L ¼ � n

2
log2p � n

2
logr2 � 1

2
logACA

� 1

2r2
ðs�QbÞTC�1ðs�QbÞ

The estimates of the parameters need to be done

iteratively using a nonlinear optimisation technique

(Pinheiro and Bates, 2000) minimising:

R ¼ ðs�QbÞTC�1ðs�QbÞ

The procedures are:


 estimate parameter vector b: b̂=[QTC� 1Q]� 1

QTC� 1s.

 Calculate the residuals e.

 Calculate the semivariance of the residuals.

 Fit a semivariogram model to the data.

 Calculate the correlation matrix of the residuals C.

 Calculate R.

 Repeat until R is minimised.

GLS has been used in soil science literature. For

example, Samra et al. (1991) predicted tree growth

from soil sodicity parameters with spatially correlated

errors. Other examples include Aiken et al. (1991),

Opsomer et al. (1999) and Vold et al. (1999). Lark

(2000) provided the theory and example of using GLS

for mapping soil organic matter content. Pachepsky et

al. (2001) used generalised least squares model with

correlated error for prediction of water retention from

terrain attributes, where e were modelled by the

semivariance. The drawback with this method is the

heavy computation time when large number of data is

involved, as the calculation time of semivariance and

inverse of the correlation matrix C will increase

(approximately cubically with sample size). Neverthe-

less, Opsomer et al. (1999) showed some mathemat-

ical manipulation to avoid the inversion of the whole

matrix. Pace and Barry (1997) developed spatial

autoregressive model, which utilised the sparse matrix

technique to allow for quick computation for large

spatial data. Hengl et al. (2003a) utilised GLS com-

bined with regression kriging for spatial prediction of

soil properties in Croatia.
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3.4.2.2. Geostatistics—scorpan kriging. Here, we

recognise that the spatial ‘‘trend’’ can be described

by f(s,c,o,r,p,a,n) and the residuals e modelled by

variograms and some form of kriging. The final

prediction is the sum of f() and e.

scorpan-universal kriging. Universal kriging

allows incorporation of both deterministic and sto-

chastic components in kriging:

SðxÞ ¼
Xp
j¼0

bjqjðxÞ þ eðxÞ:

The first term represents the nonstationary trend,

which is modelled as a set of linear functions of the

environmental variables Q with parameter vector b,

and the second term is the stochastic component

modelled by variogram. Universal kriging can be

solved by modifying the kriging system. However,

the trend function is only limited to linear functions,

and when the number of variables p is large, the

matrix inversion to solve the system can consume

heavy computation time.

Alternatively, the trend function can be modelled

separately, where kriging is combined with regression

(Ahmed and DeMarsily, 1987; Knotters et al., 1995).

This method involves regression of the soil attributes

as a function of predictor variables. This is followed

by kriging of the regressed values, where the variance

of the predicted (from the regression model) is used as

the uncertainty of the modified kriging system. This is

also known as kriging with uncertain data (Ahmed

and DeMarsily, 1987). Odeh et al. (1994, 1995)

defined regression kriging where model f() is used

to describe the relationship between predictors and

soil attributes:

SðxÞ ¼ f ðQ; xÞ þ eVðxÞ

where f(Q, x) is a function describing the structural

component of S as a function of Q at x, eV(x) is the
locally varying, spatially dependent residuals from

f(Q, x). In regression kriging, the soil property S at

unvisited site is first predicted by f(), and followed by

kriging of the residuals of the model.

As discussed at the end of Section 3.3.10, Carré

and Girard (2002) used a continuous method for

horizon and profile classification followed by multi-

ple linear regression on environmental variables. One
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regression equation was developed for the taxonomic

distance to each class centroid and the taxonomic

distances predicted at each site on their prediction

raster. The residual taxonomic distances to each class

centroid were then spatially predicted onto the raster

using ordinary kriging and added to the taxonomic

distances from regression analysis. The summed

taxonomic distances were then displayed and manip-

ulated to make class maps. In this way, regression

kriging can be used to make continuous or discrete

soil class maps taking into account the spatial corre-

lation structure of the residuals from the fitted classes

at each data point.

scorpan–simple kriging. Because f() is modelled

under the assumption that e has zero mean, simple

kriging can be applied to the residuals of the model.

Simple kriging allows prediction of the spatially

correlated residuals with known mean where the

weights of the kriging equation do not need to sum

to unity (Webster and Oliver, 1990).

scorpan–compositional kriging. So far, kriging

has been used mainly to predict soil attributes, for

prediction of soil classes incorporating predictor var-

iables Q, a form of compositional kriging with exter-

nal trend is proposed:

Pr½ScðxÞ� ¼ f ðQ; xÞ þ ecVðxÞ

where Pr[Sc(x)] is the probability of the soil at x

belongs to soil class c. The probability of the soil

classes c = 1, . . . K must sum to 1 and the residuals of

the probability must sum to 0:

XK
c¼1

Pr½Sc� ¼ 1

XK
c¼1

ecV¼ 0

Solution of this method will involve prediction of

soil classes using a form of f(), such as logistic

regression, and compositional kriging of their resid-

uals (Walvoort and De Gruijter, 2001).

3.4.2.3. Geostatistics—co-kriging and coregionalisa-

tion analysis. Another method is co-kriging. Any of

the q layers can be a covariate in co-kriging. Indeed,

many people have used this. The major problems
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with co-kriging have been twofold. First, the param-

eters of all the [( q + 1)q]/2 variograms and cross-

variograms have to be estimated and the parameters

have to obey a strict inequality (Wackernagel, 1987).

Secondly, and more importantly, the co-kriging mod-

el really assumes linear relationships between the

predictor and predicted variables. The use of cate-

gorical predictors and predicted variables is also

difficult. Odeh et al.’s (1995) experience was that

co-kriging did not perform as well as S = f(r) + e

(regression kriging) and was more cumbersome to

use. We prefer the scorpan model, but co-kriging

should not be dismissed and the difficulties and

restrictions will be overcome. It can be argued that

co-kriging is a kind of generalised linear model. Co-

kriging can be used for soil attributes and composi-

tional (co)kriging (de Gruijter et al., 1997; Walvoort

and De Gruijter, 2001) can be used for indicators or

probabilities of discrete soil classes or memberships

of continuous ones.

Coregionalisation analysis. Even if co-kriging is

not done, coregionalisation analysis (e.g., Lark and

Papritz, 2003) is a very instructive way of studying

the linear spatial relationships between soil and the

predictor variables Q. This will indicate the spatial

scales over which we might expect linear relationships

to hold.

3.4.3. Other spatial methods

Bayesian maximum entropy (BME) was intro-

duced by Christakos (1990, 2000). This approach

allows the incorporation of a wide variety of hard

and soft data in a spatial estimation context. The data

sources may come in various forms, such as intervals

of values, probability density functions (pdf) or phys-

ical laws (Christakos, 2000). Bogaert and D’or (2002)

used BME algorithm and a Monte Carlo procedure

(BME/MC) to generate map of particle-size distribu-

tions from a limited number of accurate measurements

and a spatially exhaustive soil map. Compared with

ordinary kriging (OK), this approach has the advan-

tage of using soft information on a sound theoretical

basis.

Fractal interpolation has arisen as an effort to

preserve the spatial variability of original data when

transferred across scales. Bindlish and Barros (1996)

used a fractal interpolation method to map digital

elevation data at different spatial resolutions. With a
fractional Brownian surface as the interpolating basis

function, they found that the fractal interpolation

approach preserved well the spatial structure and the

vertical scale of the data. Kim and Barros (2002)

presented a downscaling model which includes spa-

tially and temporally varying scaling functions, and

the scaling functions are linear combinations of the

spatial distributions of ancillary data. They demon-

strated it with downscaling soil moisture fields from

10 to 1 km resolution using remote-sensing data.

3.5. Previous studies

Although the scorpan model has not previously

been formalised, various authors have fitted parts of it.

Here, we summarise the work of a large number of

studies in Tables 3 and 4. We believe the tables cover

a large proportion of the relevant studies. At least 70

studies have been completed over the last decade or

so. About 35% of the studies are from Australia, 25%

from the USA and 10% from France.

We can see that soil attributes have been estimated

more often (70% of studies) than soil classes (30% of

studies). The number of observations ranges from 30

to 2448 with a median value of 180, although several

studies rely on digitised soil maps as the principal data

source. The extent varies from a minimum of 0.007

km2 to a maximum of 1,058,000 km2 with a median

of 30 km2. The data density expressed as the number

of observations per square kilometre varies from

0.00009357 to 1080 with a median of 5. The pixel

size of the digital maps produced range from 2 m to 1

km with a median of around 20 m.

The key predictor factors are r (80% of studies)

followed by s (35%), o and p (both 25%), n (20%) and

c (5%) whereas a does not seem to have been used as

a factor. A single factor is used in 40% of studies, two

factors are used in 40% of studies, around 10% of

studies considered three of the seven factors and 2%

considered four factors. No studies considered five or

more factors. The most common combination was r

and s. Most studies used a DEM as the main source of

ancillary data, followed by remotely sensed imagery

and preexisting soil coverages.

A wide variety of methods for modelling f() have

been attempted. Generalised linear models mainly in

the form of multiple regression has been the most

common analysis tool to model f(), followed by co-
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kriging. The use of regression trees and neural net-

works has so far not been widespread.
4. Sources of data—the seven scorpan factors

There are seven factors or sets of variables in the

scorpan model which makes it different from Jenny’s

model. The aim is to obtain information on all of

these. It will be a matter of convenience (access to

data sources) and scientific contention which variables

are used to represent the factors. Indeed, this is an area

that has not been well enough studied. The creation of

these digital maps of the input environmental varia-

bles representing the six factors in the scorpan model

is seen as an integral part of the digital soil resource

assessment approach and a very valuable, environ-

mentally useful, by-product of the new approach. The
Fig. 1. The electromagnetic spectrum, highlighting the useful parts for o

remote and proximal sensing. The boundaries for the infrared spectrum (N

and remote-sensing literatures. The terms in this figure are based on remot

as: NIR: 0.7 to (2.5–5) Am, MIR: (2.5–5) to (25–40) Am and FIR: (25–
layers can be used for other modelling purposes.

Much of the earth science and ecological research of

the last twenty years has been contributing towards

the creation of these layers.

These digital surfaces themselves will be created

using some kind of surface modelling procedure

regression kriging or Laplacian smoothing splines or

TINS. For D3 surveys, they should probably be

produced on a 100 m raster with a block size of say

100� 100 m.

Fig. 1 highlights the useful parts of the electro-

magnetic spectrum for obtaining information on soil

and environmental variables through remote and

proximal sensing.

Some technologies such as satellite remote sensing

offer the possibility of providing indirect information

on a number of the scorpan factors. For example,

emission and subsequent detection of radio frequen-
btaining information on soil and environmental variables through

IR, MIR and FIR) are not consistent and vary between the chemical

e-sensing literature, while the other literature defines the wavelength

40) to 1000 Am.
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cies (radar) is promising for surface cover (o), bio-

mass (o), surface roughness (r or s) and surface soil

moisture (s) estimation. Radar is further enhanced by

interferometric and polarimetric methods: InSAR in-

terferometric synthetic aperture radar, and PolSAR

polarimetric synthetic aperature radar. Radar operates

over a number of frequency ranges: in order of

decreasing frequency the so-called X, C, L and P

bands. The C and L bands have been used in satellite

platforms, e.g., C on ERS1 and 2 and L on JERS. The

P band has so far only been available on airborne

platforms. Hoekman and Quiñones (1999) and Qui-

ñones and Hoekman (2001) have demonstrated the

use of P band and PolSAR for mapping landcover and

biomass in Colombian rainforests. LiDAR (light de-

tection and ranging) uses pulses of laser light to

illuminate the soil surface can be used to map surface

roughness or topography (Bunkin and Bunkin, 2000;

Schmugge et al., 2002).

4.1. s

Remote and proximal active and passive sensing

gives detailed information on the soil themselves—

these reflections or emissions or transmissions are

intrinsic properties of the soil material and profile

they may indicate other soil attributes like texture or

mineralogy. This factor is likely to becoming increas-

ingly important as technology advances.

4.1.1. Surface multi and hyperreflectance

Hyperspectral sensors are those which measure a

large amount of bands with spectral resolutions less

than 20 nm (Palacios-Orueta and Ustin, 1998). In

terms of mapping soil information, hyperspectral

sensors have been found to be useful in mapping

mineralogical features such as iron oxides (King et al.,

1995) carbonates and sulphates (Crowley, 1993). The

amount of information generated by hyperspectral

sensors poses computational problems in terms of

extracting useful information in an efficient manner

(see Section 3.3.1—principal component regression

and partial least squares).

In a general way, the use of digital remotely sensing

imagery for mapping soil has been problematic be-

cause vegetation cover obscures much of the soil

response making it necessary to search for indirect

evidence that may be visible at the surface (Campbell,
1987). Thus, remote sensing cannot be applied alone to

soil studies (Lee et al., 1988). The use of proxies (such

as topography, vegetation, drainage patterns) and field

observations are important approaches for inferences

about soil. In fact, mapping forest soil directly from

remotely sensed data is difficult because of the com-

plexity of environmental factors contributing to the

spectral reflectance measured by a sensor. Neverthe-

less, forest soil was correctly mapped only where they

were correlated with species or when vegetation is

sparse or absent as a result of cultivation or drought

(Post et al., 1994). The principal problems to soil

delineation from such imagery, in addition to vegeta-

tion cover, are:


 Soil moisture content can interfere with the spectral

reflectance (specially in the infrared, thermal and

microwave regions (Obukhov and Orlov, 1964);

 Atmospheric effects (Cipra et al., 1980);

 Physical soil characteristics (Huette, 1988) and,

 Observation conditions (e.g., intensity and direc-

tion of illumination).

However, some research has been done in adjusting

some of these drawbacks, by creating some indices

with the main purpose of removing the effect of soil

spectral influence (Huette, 1988) or even adjusting the

images for vegetation interference and in combination

with other information and developing prediction mod-

els for improving soil mapping (Odeh and McBratney,

2000). In this way, Dobos et al. (2001) used satellite

data complemented with DEM data, in order to correct

the distortions caused by topographic variations of the

landscape and provide additional data for soil–land-

scape modelling.

The presence of vegetation cover attenuates elec-

tromagnetic radiation at most wavelengths (Skidmore

et al., 1997), and the reflectance at the soil surface

does not always reflect soil variation at depth (Agbu et

al., 1990). While infrared and visible sensors only

measure surface characteristics, radar and gamma

radiometry can provide spectral information beyond

the vegetative cover and the soil surface.

4.1.2. Radar attenuation

Information can be obtained by radar especially if

there is a light-textured soil (low dielectric constant)

over a heavier textured horizon (high dielectric) or a
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water table (very high dielectric) and radar sensors can

penetrate through soil to a depth that is equal to 10–

25% of their wavelength (Lascano et al., 1998). The

longest wavelength radar sensor available from space

platforms is 23.5 cm (L band) on the JERS-1 satellite.

So far, we have only considered empirical methods

where the multivariate prediction methods have been

used to incorporate the remotely sensed imagery into

prediction models. In the case of synthetic aperture

radar (SAR), the back scattering signal is largely

dependent on the dielectric properties of the media

that is reflecting the signal, in the case of soil this is

the volumetric moisture content (Moran et al., 1997).

Therefore, physical models based on the theory of the

diffraction of electromagnetic waves have been de-

veloped, an example being the Integral Equation

Model (IEM) (Fung et al., 1992). The model calcu-

lates a backscattering coefficient that is based on:

radar sensor configuration, e.g., observation fre-

quency, polarisation, incidence angle,

surface characteristics, e.g., roughness and dielec-

tric properties.

The model was adapted successfully to predicting

soil moisture from bare soil surfaces by Altese et al.

(1996). The presence of vegetation complicates mat-

ters, and it is currently too difficult to create models

describing the interaction between soil–vegetation

layers and microwaves in real world applications.

Therefore, in the presence of vegetation, empirical

approaches are required (e.g., Dobson and Ulaby,

1986; Wood et al., 1993).

4.1.3. Electrical conductivity

Soil bulk electrical conductivity (or its reciprocal

soil electric resistivity) reflects a combination of soil

mineralogy, salts, moisture and texture, hence, it is a

good compound measure of soil. Two commonly used

kinds of instruments are: electromagnetic induction

(EMI) and electrical conductivity/resistivity based on

rolling electrodes (ECRE). The most widely used

instruments for soil studies are the EMI devices from

Geonics in Canada and two types of ECRE devices, a

US design (Lund et al., 1999) and a French one

(Tabbagh et al., 2000). These instruments have been

used extensively in precision agriculture for mapping

soil types and properties (such as Bishop and McBrat-
ney, 2001; Sudduth et al., 2001; Anderson-Cook et al.,

2002). Such proximal sensing offers the possibility of

producing high resolution maps of soil properties (D1

surveys of Table 1). Regression equations have been

developed to predict moisture content, topsoil thick-

ness, and clay content. EMI instruments can be placed

in airborne platforms for catchment and regional

mapping.

4.1.4. Gamma radiometrics

Gamma-Ray Spectrometry (GRS) provides a direct

measurement of natural gamma radiation from the top

30–45 cm of the soil (Bierwith, 1996). A gamma-ray

spectrometer is designed to detect the gamma rays

associated with radioactive elements, and to accurately

sort the detected gamma rays by the respective energies

(Grasty et al., 1991). Airborne radiometrics survey

measures the radiation naturally emitted from the earth

surface, using gamma-emitters like 40K and daughter

radionuclides of 238U and 232Th. K is a major constit-

uent of most rocks and is the predominant alteration

element in most mineral deposits. Uranium and Thori-

um are present in trace amounts, as mobile and immo-

bile elements, respectively. As the concentration of

these radioelements varies between different rock

types, we can use the information provided by a

gamma-ray spectrometer to map rocks. Airbone meth-

ods (air gamma-ray spectrometer, AGRS) provide

valuable, systematic coverage of large areas, by pro-

viding information about the distribution of K, U and

Th that is directly interpretable in terms of surface geo-

logy. Nevertheless, AGRS is a surface technique on-

ly—interpretation requires an understanding of the

nature of the surficial materials and their relationship

to bedrock geology.

Although this technique has been employed for

geological and mineral resource mapping for over 20

years, it has just become an interesting tool in soil

science for detecting spatial variation of soil-forming

materials (the p factor). It can also be considered as a

direct, albeit compound, measure of the mineralogi-

cal and textural composition of the soil itself (s).

Gamma-radiation data are usually available are pro-

vided in three channels corresponding to spectral

windows for K, U and Th radiation. The apparent

K concentration is likely to be most easily inter-

preted by pedologists. The value of gamma-radio-

metric data is increasing with the knowledge of their
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relation with soil-forming materials and when con-

sidered jointly with other information such as terrain

models or aerial photography (Cook et al., 1996b)

has become an important source of data for digital

soil mapping. This technique has also been applied

to estimate variation in surface soil moisture content

(Carrol, 1981).

4.1.5. Preexisting soil class or property maps or

expert knowledge

An existing soil map for parts of an area can be

used to build a prediction model, or an experienced

surveyor’s expertise can be used to make simple rules

that can be applied to a DEM, etc. These soil layers

should be used as part of the information to build the

new model—they should not really be the model

itself. This is arguable, there is further discussion in

Section 5.1.2.

4.2. c

Climate could be represented by mean annual

temperature (T) and mean annual rainfall (P) and

perhaps some measure of potential evapotranspiration

(E). In the old literature P/E was used to separate

pedalfers from pedocals. A P/Eb1 would imply

semiarid conditions and precipitation of carbonates,

etc. at depth.

Attempt to use soil moisture and temperature

regimes for classification of soil has also been made

(Donatelli et al., 2002). They made a classification

using dynamic simulation of physical processes which

describe the system soil-grass as affected by weather.

The daily step simulation of a reference grass offered

an insight into the soil moisture and temperature

regimes of different soils.

Climate surfaces can be produced from meteoro-

logical stations interpolated by Laplacian smoothing

splines (Hutchinson, 1998a,b). This has been imple-

mented in a program called ANUCLIM. The climate

variables used are monthly mean values for minimum

temperature, maximum temperature, precipitation, so-

lar radiation, evaporation and others. The climate

surfaces can be used to generate secondary informa-

tion, e.g., bioclimatic parameters such as mean tem-

perature of warmest period, precipitation of driest

quarter, etc., which are useful in determining the

climatic envelope for plant and animal species.
Published work suggests that remote-sensing anal-

ysis can be used for estimating and mapping air

temperature, soil moisture and atmospheric humidity

at regional to global scales. Air temperature can be

inferred from normalised difference vegetation index

(NDVI) data from the NOAA Advanced Very High

Resolution Radiometer (AVHRR). Several studies

have shown that the surface albedo can be estimated

using remote sensing data (i.e., Brest and Goward,

1987), and that net radiation can be calculated with

sufficient accuracy (Boegh et al., 2002; Kustas and

Norman, 1996).

4.2.1. Temperature

Surface temperature can be derived from remote

sensing such as: AVHRR, Geostationary Orbiting

Earth Satellite (GOES) (Diak et al., 1998) and TIROS

operational vertical sounder (TOVS) (Susskind et al.,

1997). The TOVS has two sensors: the high-resolu-

tion infrared sounder and the brightness temperatures

of the microwave sounding unit. These data can

provide estimates daily air temperature, humidity

profiles and surface temperature (Susskind et al.,

1997).

Goetz et al. (1995) compared surface temperature

derived from a multispectral radiometer (MMR)

mounted on a helicopter (resolution f 5 m pixel), a

C-130-mounted thematic mapper simulator (TMS)

(f 20 m pixel) and the Landsat 5 thematic mapper

(120 m pixel). Differences between atmospherically

corrected radiative temperatures and near-surface

measurements ranged from less than 1 jC to more

than 8 jC. Corrected temperatures from helicopter

MMR and TMS were in general agreement with near-

surface infrared radiative, thermometer measurements

collected from automated meteorological stations

while the Landsat 5 TM systematically overestimated

surface temperature.

4.2.2. Precipitation

Spatially distributed precipitation estimates can be

derived from rainfall gauge measurements (interpolat-

ed using splines or other techniques) or by remote

sensing. Records of gauge measurements of monthly

precipitation are available throughout the entire twen-

tieth century, while satellite estimates can provide

monthly to hourly resolution since 1974. A review

has been given by New et al. (2001).
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4.2.3. Evapotranspiration

Estimation of evaporation is mainly derived from

the energy-balance equation:

Rn � G ¼ H þ kE;

where Rn is net radiation, G is soil heat flux, H is the

sensible heat flux and kE is the latent heat flux. Using

remote-sensing techniques, we could infer the magni-

tude of the fluxes of the heat component from surface

and air temperatures as derived from radiometric

temperature.

Li and Lyons (2002) estimated regional evapotrans-

piration in central Australia, using limited routine

meteorological data and the AVHRR data. Their model

attempts to minimise the difference between model-

predicted surface temperature and satellite-derived

temperature to adjust the estimated soil moisture. They

suggested that radiometric surface temperature can be

used to adjust simple water-balance estimates of soil

moisture providing a simple and effective means of

estimating large-scale evapotranspiration in remote

arid regions.

Boegh et al. (2002) used Landsat TM data to

estimate a composite evaluation of atmospheric resis-

tance, surface resistance and evapotranspiration. The

input parameters were: surface temperature, net radi-

ation, soil heat flux, air temperature, and air humidity.

The application of the technique in a remote-sensing

monitoring context was demonstrated for a Danish

agricultural landscape containing crops at different

stages of development.

4.2.4. Water-balance components

The familiar water-balance formulation is:

P þ I ¼ DS þ E þ T þ Rþ D;

where P= precipitation, I = irrigation, DS = change

in soil moisture, E = evaporation, T= transpiration,

R = surface runoff, D = deep drainage.

Precipitation and evapotranspiration can be esti-

mated from remote-sensing data. The most important

component relating to soil itself is soil moisture, and

much research has been focused on estimating spa-

tially distributed soil moisture (see also Section 4.1.2).

Jackson et al. (1996) gave an overview of remote-

sensing techniques for estimating soil moisture. Many

studies have successfully demonstrated the use of

A.B. McBratney et al. /
infrared, passive and active microwave sensors to

estimate soil moisture (Hoeben and Troch, 2000).

Microwave remote sensing of soil moisture is based

on the soil’s dielectric properties. The large difference

between the dielectric properties of dry soil and

moisture enables good calibration. The analysis is

based on a model that simulates radar backscattering

given known surface characteristics such as moisture

and roughness. Passive microwave sensors have the

advantage of less dependence on soil surface rough-

ness. The main disadvantage with spaceborne sensors

is that they produce low-resolution images. This

problem is overcome in active microwave sensing

through the use of synthetic aperture radar (SAR)

sensors (10–100 m). This has been used to monitor

spatial and temporal soil moisture at catchment scale

(10–1000 km2) both in vegetated and nonvegetated

areas (Lin et al., 1994; Su et al., 1997). Mancini et al.

(1999) evaluated the use of multifrequency radar

observations in the laboratory for estimating soil

moisture.

4.3. o

The main soil forming or altering organisms are

vegetation or humans, although other organisms can

have an appreciable soil-modifying effect locally

(Hole, 1981). In pristine or newly developed environ-

ments, the ‘natural’ vegetation class should represent

some kind of equilibrium relation with soil type.

Human effects can be seen through land use changes

whereupon humans choose different soil types for

various purposes. Therefore, land use and land cover

are useful indicators of soil properties and class. More

recently, estimates of biomass for both crops and more

natural vegetation have been obtained; once again

these can reflect soil differences. Estimates of vege-

tation type, land use and land cover and biomass have

all been obtained from visible and infrared reflectance

by remote sensing and have been enhanced more

recently by microwave imagery (Clevers and van

Leeuwen, 1996).

4.3.1. Vegetation maps

Due to the global interest concerning the man-

agement and conservation of native forest, the de-

velopment of rapid, cost-effective methods for forest

mapping is becoming a challenge. The development



A.B. McBratney et al. / Geoderma 117 (2003) 3–5230
of digital remote sensing is a promising technology

to help in reducing time and costs in mapping

vegetation. For example, Townshend et al. (1991)

used remote sensing and GIS technology to charac-

terise land cover and the production of thematic

maps for very large areas. Zhu and Evans (1994)

have used AVHRR combined with regression anal-

ysis of multitemporal and multisource data, in order

to predict forest types and percent of forest cover in

the USA on a regional scale. They concluded that

multitemporal AVHRR data can be used to produce

fairly detailed forest cover maps, since sufficient

ancillary data are available for identification of spec-

tral classes. Other studies have been made combin-

ing remote sensing GIS, statistical analysis, DEM

and ancillary information to map vegetation (Dymond

et al., 1992; Hoersch et al., 2002; Lees and Ritman,

1991; Michaelsen et al., 1994; Moore et al., 1991).

DeFries et al. (2000) proposed applying a linear

mixture model to l-km AVHRR data to estimate

proportional cover for three important vegetation

characteristics: life form (percent woody vegetation,

percent herbaceous vegetation and percent bare

ground), leaf type (percent needle leaf and percent

broadleaf), and leaf duration (percent evergreen and

percent deciduous).

Owens et al. (1999) estimate the current and pre-

European mineral soil carbon (C) content of a forested

landscape by utilising current forest stand information

and pre-European settlement forest data. The forest

stands and vegetation patches of the current and pre-

European settlement land covers were assigned to one

of the three soil C classes based on the type of

vegetation present. Using organic matter data from

soil surveys of the area, a range of mineral soil C

values was determined for each soil mapping unit and

vegetation combination.

Verboom and Pate (2003) showed that radiomet-

ric data can be indicative of plant distribution. They

showed that highly weathered low K soils co-con-

centrated U and Th and were vegetated mainly by

cluster root-bearing Proteaceae and Casuarinaceae.

In granitic soils, ratios of U to Th were higher and

cluster root bearing taxa much less prominent,

except where ferricrete gravels were concentrated.

Draping of radiometric imagery over a digital ele-

vation model showed spiral waveforms of high and

low U and Th signal which were largely indepen-
dent of topography but demarcated different oligo-

trophic communities.

4.3.2. Land cover and land use classification

Land cover classification is one of the principal

motivations and successes of satellite remote sensing.

This classification is obtained by supervised classifi-

cation from some ground-control points. The interest

for digital soil mappers is to detect areas of bare soil,

or of particular crops representing where humans have

picked out soil with particular qualities. Chen et al.

(1999) have developed a 1-km landcover dataset of

China using AVHRR data (suitable for D4 mapping)

(Table 1). Presumably similar land use coverage could

be obtained regionally and nationally from Landsat

and SPOT imagery.

4.3.3. Biomass and yield maps

Besides landcover itself, improved soil discrimina-

tion might be afforded by estimates of biomass

variation within particular land uses. This estimation

has been developed using visible and near-infrared

vegetation indices, such as the Normalised Difference

Vegetation Index (NDVI) for natural vegetation and

for crops (Lobell et al., 2003). Improved estimation

can be obtained by hyperspectral imagery in the

visible-NIR range (Gupta et al., 2001) or through

the use of microwave imagery (Clevers and van

Leeuwen, 1996). The use of yield monitors on har-

vesting machines also provides a source of spatial

biomass information (Stafford et al., 1996). Bishop

and McBratney (2001) used yield-monitored wheat

yield to aid in the prediction of soil clay content.

Yield-monitored data are currently useful for D1

mapping (Table 3).

4.4. r

This is now mainly derived from digital elevation

models. Sources of elevation data can be from

digitising contour and streamline data, point meas-

urements of elevation from traditional land surveys

or from vehicle-mounted high-resolution GPS re-

ceivers, or remotely sensed elevation data. The first

step to use this information is parametisation of the

surface model or the numerical description of con-

tinuous surface form (Pike, 1988; Wood, 1996).

Parametisation is to quantitatively measure properties
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of a landscape that can be used to describe form

(Wood, 1996). These parameters are aimed to char-

acterise the geomorphometry of the surface or for

landform classification.

Different attributes can be parameterised from a

DEM, such as altitude, slope, aspect, different curva-

tures, upslope area, compound topographic index, etc.

Topography has been recognised as one of the soil-

forming factors (Jenny, 1941). Aandahl (1948) is

perhaps the first scientist to quantitatively relate land-

scape attributes to soil properties. He derived the dis-

tribution of N based on slope length. Troeh (1964) fit

a cylindrical parabola to contour lines to derive slope

and curvatures. The landform parameters were de-

rived to correlate to soil drainage classes. Many would

argue that digital terrain modelling is the most useful

and quantitatively developed factor for predicting soil

attributes and soil classes (McKenzie et al., 2000).

4.4.1. Primary terrain attributes

The digital elevation model is the basis for calcu-

lation of surface attributes, which include slope,

aspect, curvature and upslope contributing area. Pri-

mary attributes have been used successfully in nu-

merous studies (see Table 4) to predict different soil

attributes and classes. We can separate the primary

attributes into parameters that were derived locally

(using the local neighbourhood points) and derived

from the DEM of the whole area (regional) using

some specific rules. Shary et al. (2002) divided further

the local and regional into scale-specific and scale-

invariant. Evans (1972, 1998) provide an overview of

primary terrain attributes in relation to their geomor-

phologic meaning.

A quadratic trend local surface is usually fitted to

the local neighbours, such as Evans (1980):

z ¼ ax2 þ by2 þ cxyþ dxþ eyþ f :

Other methods have also been proposed (Zever-

bergen and Thorne, 1987; Shary, 1995). The standard

method involves calculating the parameters of a

central cell and its eight neighbourhood in a moving

3� 3 cell window. The purpose of this fitting is that it

enables the easy calculation of the first and second

derivative of the surface, and these values can be used

to calculate slope, aspect and various curvatures.

Shary et al. (2002) defined 12 types of curvature that
potentially can be used for landform classification and

spatial prediction.

Calculation of the first and second derivatives

using a local window is scale dependent. The derived

parameters are only relevant to the resolution of the

DEM and the neighbourhood cells used for calcula-

tion. Wood (1996) proposed a multiple-scale para-

metisation by generalising the calculation for different

window sizes.

For regional parameters, upslope contributing area

is one of the most important ones. This parameter

(also called drainage or catchment area) is the area

above a certain length of contour that contributes flow

across the contour. There are different algorithms for

estimating this quantity, such as the single flow-

direction, randomised single-flow direction (Rho8)

and DEMON Stream tube (Gallant and Wilson,

2000). Dobos et al. (2001) proposed a potential

drainage density (PDD) designed to highlight relative

terrain differences even on a relatively level land

surface.

4.4.2. Secondary terrain attributes

Secondary terrain attributes are computed from

the primary attributes. These have been described in

detail by Wilson and Gallant (2000), Moran and Bui

(2002). These attributes usually combine two or

more primary attributes to characterise the spatial

variability of specific processes in the landscape. The

most widely used is Compound Topographic Index

(CTI) or also called wetness index:

CTI ¼ ln
As

tanb

� �

where As is the upslope area and b is the slope.

Wilson and Gallant (2000) also provide routines for

the calculation of erosion, solar radiation and dy-

namic wetness indices.

4.4.3. Terrain or landscape classification

Traditional landform classification is based on

qualitative description from surface shape. Automated

classification of the landform from quantitative digital

terrain models is the ultimate desire. Pennock et al.

(1987) define seven-unit landforms based on an

analysis of local surface shape. Wood (1996) was

able to differentiate six landform features (peak, ridge,



Table 4

Sources of the scorpan factors for predicting soil classes and/or attributes in previous quantitative studies

Authors Predicting factors Predicted factor

s c o r p

Troeh (1964) Slope, curvatures Soil drainage

classes

Walker et al.

(1968)

Elevation from

contour map

Soil properties

Pavlik and

Hole (1977)

Soil survey data DEM Soil classes

Legros and

Bonneric

(1979)

Soil survey data DEM Geology map,

lithology

Soil classes

Pennock et al.

(1987)

DEM Soil properties

Lee et al. (1988) Landsat TM DEM: altitude,

slope, aspect

Soil classes

Frazier and

Cheng (1989)

Landsat TM Soil properties

Bhatti et al.

(1991)

Lab. analysis

Landsat TM

Soil properties

Odeh et al.

(1991, 1992,

1994, 1995)

Soil morphology,

physical and

chemical properties

DEM Soil classes

Bell et al. (1992) DEM Bedrock and

superficial

geology

Soil drainage

classes

McKenzie and

Austin (1993)

DEM Soil survey,

air photo

Soil properties

Moore et al.

(1993)

Slope,

Wetness Index

Soil properties

Dymond and

Luckman

(1994)

DEM Regolith map Soil series

Arrouays et al.

(1995)

Soil analysis Climate data Relief data Soil properties

Gessler et al.

(1995)

Plan curvature,

CTI

Soil properties

Knotters et al.

(1995)

ECa Soil horizon

thickness

Cook et al.

(1996a)

Soil survey data Soil properties

Cook et al.

(1996b)

Airborne gamma

radiometric data

Soil parent

material classes

Skidmore at al.

(1996)

Aerial photograph DEM Soil classes

Zheng et al.

(1996)

DEM Soil properties

Cialella et al.

(1997)

AVIRIS DEM

Dobermann and

Oberthur

(1997)

Soil physical and

chemical properties

Soil fertility

classes

Lagacherie and

Holmes

(1997)

DEM Geology map Soil units
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Table 4 (continued )

Authors Predicting factors Predicted factor

s c o r p

Skidmore et al.

(1997)

Thompson et al.

(1997, 2001)

Slope, profile

curvature,

elevation above

local depression

Soil

Hydromorphic

Index

Voltz et al. (1997) Soil map h wilting point

Zhu and

Band (1994),

Zhu et al.

(1996, 1997,

2001)

Landsat TM

(canopy

coverage)

DEM Geological map Soil series and

soil properties

Zhu et al. (1997) DEM Geological map Soil properties

Bui et al. (1999) DEM Geological map Soil classes

Lilburne et al.

(1998)

DEM Soil properties

McKenzie and

Ryan (1999)

PI estimated

from DEM

Slope, specific

catchment area,

CTI, flow

direction

Geological map,

gamma radiation

Oberthur et al.

(1999)

Soil map,

aerial photo,

farmer’s

knowledge

Soil texture

Sinowski and

Auerswald

(1999)

Soil survey Elevation, slope,

upslope catchment

area

Soil properties

Thomas et al.

(1999)

DEM Geological map Soil classes

Bell et al.

(2000)

Soil map Aerial

photograph

DEM Soil organic C

content

Bourennane

et al. (2000)

DEM Soil horizon

thickness

Chaplot et al.

(2000)

Elevation above

streambank, slope,

specific catchment

area, CTI

Hydromorphic

Index

Dobos et al.

(2000)

Elevation, slope,

PDD

Soil classes

Lagacherie and

Voltz (2000)

DEM h wilting point

McIntosh et al.

(2000)

Relief map

Ryan et al.

(2000)

Rainfall,

temperature,

net radiation,

PI

Landsat TM DEM Airborne gamma

radiometric

Soil properties

Odeh and

McBratney

(2000)

AVHRR Clay content

McBratney

et al. (2000)

ECa Crop yield DEM Clay content,

CEC

(continued on next page)
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Table 4 (continued )

Authors Predicting factors Predicted factor

s c o r p

Zhu (2000) Landsat TM

(Canopy

Coverage

Index)

DEM Geological map Soil series

Bishop and

McBratney

(2001)

Soil ECa,

aerial photograph,

Landsat TM

Crop yield DEM CEC

Bui and

Moran

(2001)

Soil map,

Landsat TM

DEM Lithology map Soil classes

Boruvka et al.

(2002)

Soil properties

map: pH, CEC,

OC, texture

Campling et al.

(2002)

Landsat TM DEM: slope,

aspect, profile,

tangential and

plan curvatures,

CTI, stream

power index,

slope-aspect

index

Soil drainage

classes

Carré and Girard

(2002)

Soil map SPOT DEM Geological map Soil classes

Chaplot and

Walter (2002)

DEM: upslope

catchment area,

CTI

Hydromorphic

Index

Florinsky et al.

(2002)

DEM

Florinsky and

Eilers (2002)

DEM:

horizontal

and vertical

curvatures

Soil OC content

Hengl et al.

(2002)

Climatic

map

AVHRR DEM Soil pH and OM

content

Mayr et al.

(2003)

DEM Statigraphic

geology map

Soil classes

Park and

Vlek (2002)

Soil map Vegetation

map

DEM Soil properties

Peng et al.

(2003)

Soil map,

Landsat TM,

IKONOS,

DOQ

DEM Soil drainage

class

Scull et al.

(2003a)

Landsat TM DEM DEM Surface gravel

content

Sommer et al.

(2003)

EM induction

survey

Airborne

multispectral

scanner

DEM, curvature

and upslope

catchment area

Soil classes

Hengl et al.

(2003a)

DEM Thickness of

topsoil, soil

pH and OM

content
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pass, plane, channel and pit) from locally derived

parameters (slope; cross-sectional, longitudinal, min-

imum and maximum curvatures).

MacMillan et al. (2000) produced a landform

classification based on quantitative digital variables.

They proposed a conceptual design for a multilevel,

hierarchical system of automated landform classifica-

tion. The model incorporated hydrological and geo-

morphic criteria to define and delineate spatial entities

at multi scales. MacMillan et al. recognised that

spatial entities delineated solely on the basis of

geomorphic shape are insufficient to meet many

inventory and modelling needs, as they lack the

information required to establish linkages, interactions

and flows between spatial entities. Similarly, landform

units defined solely on the basis of hydrological

criteria are incomplete in that they do not differentiate

areas of different surface morphology or relative

landscape context. Using 37 different terrain attrib-

utes, they are able to classify 15 landform elements by

employing a fuzzy logic.

Other approaches on terrain classification include

fuzzy k-means analysis (Burrough et al., 2000; Ven-

tura and Irvin, 2000) or based on the relative elevation

within a search radius (Blaszcynski, 1997; Fels and

Matson, 1996).

4.5. p

Parent material information can be obtained from

digitised geological maps—maps that focus on lithol-

ogy and not so much on stratigraphy will probably be

more useful for soil prediction. Some kind of quanti-

tative information about surface mineralogy and tex-

ture (related to parent material) can be obtained by

gamma radiometrics (see the previous discussion in

Section 4.1.4). Geomorphological and weathering

models (Dickson et al., 1996) have been used to

identify the distribution of soil-forming materials.

Additionally, the natural fields of the earth, grav-

itational, electrical (Andriani et al., 2001), magnetic

(Galdeano et al., 2001) and electromagnetic (Beard,

2000) can be used to provide information on under-

lying geological structure. Taylor and Eggleton (2001)

discuss regolith mapping. Regolith should be predic-

tive of soil, as soil is the upper part of it. The regolith

can be thought of as representing either s or p. Indeed,

regolith itself may more useful than the soil profile for
hydrological environmental modelling. Regolith maps

are produced in Australia from a combination of

multi- and hyperspectral and airborne geophysical

data and expert knowledge: reflecting the scorpan

approach.

4.6. a

a represents age or elapsed time. This will give

limits on how long pedogenesis has been occurring

and should differentiate soil classes and properties.

One useful estimate of a is the age of the ground

surface, which may be very old indeed (Twidale,

1985). Alternatively, a can be represented by the

age of the material in which soil has developed,

suggesting that the scorpan approach will not deal

well with polycyclic soils. It is theoretically likely that

soil development will follow some logarithmic or

square–root time relationship, suggesting more need

to differentiate between younger materials than older

ones. Schaetzl et al. (1994) discuss the form of soil

chronofunctions.

Geomorphologists and stratigraphers can presum-

ably draw maps of a independent of soil maps. In fact

such ‘‘gues(s)timated’’ maps along with an estimate of

uncertainty could be used to represent this factor.

There are methods for soil and material dating of

course, e.g., 14C, d18O, thermoluminescence (inter

alia, Matt and Johnson (1996)) and 40Ar/39Ar (inter

alia, Van Niekerk et al. (1999)). None of these are, as

far as we are aware, capable of scanning and produc-

ing full coverages in a true remote-sensing fashion.

Ground electromagnetic methods have been used for

stratigraphic mapping, e.g., Sinha (1990). a remains

difficult to characterise well. Indeed, it seems that

more than any factor expert knowledge is still needed

to derive a. Considerable advances in technology and

knowledge are needed.

4.7. n

As was discussed in Section 2, soil can be pre-

dicted from spatial coordinates alone. Obtaining these

is now much easier due to the advent of GPS with 5-m

accuracy receivers costing less than US$1000. This

may indeed reflect some other environmental variable

such as climate, and because of this it can be argued

that n is not really a factor, but simply putting the
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coordinates is a simple way to ensure that spatial

trends not included in the other environmental varia-

bles are not missed. Therefore, n could also be

described by some linear or nonlinear (nonaffine)

transformation of the original spatial coordinates,

e.g., a new coordinate could be the closest distance

of each location to the coast (Webster, 1977, p. 201),

or distance uphill from the nearest discharge area (Bui

and Moran, 2000). This factor is potentially a valuable

yet cheap source of environmental information, and

should never be disregarded.
5. Discussion

Having presented a review of what has been done

by others, and having suggested and reviewed a

generic predictive model and potentially useful envi-

ronmental data layers, we now put this into a frame-

work for soil mapping based on scorpan and soil

spatial prediction functions (SSPF) and spatially auot-

correlated errors (e). The scorpan-SSPFe approach is

now outlined with some brief discussion of each of

the steps. It is a proposal. Uses, problems, and other

implications of the scorpan-SSPFe approach are dis-

cussed subsequently.

5.1. Summary of the scorpan-SSPFe method

The scorpan-SSPFe method essentially involves

the following steps.

5.1.1. Define soil attribute(s) of interest and decide

resolution q and block size b
These are the design specifications for the survey.

Define soil attribute(s) of interest, i.e., a soil property

or set of soil properties and/or a set of soil classes,

usually from some predefined classification system.

The resolution may be defined by the resolution of the

environmental variables, e.g., 30 m Landsat pixels,

but should be a design specification from the intended

use of the information. Referring back to Table 1, we

believe the methodology discussed here is most ap-

propriate for D3 surveys, therefore, pixel or block size

q, is equal to pixel spacing b, and will be in the range

20–200 m. The linking of q and b is a simplification,

and is a point that requires further study (see Bishop et

al., 2001 for further discussion). At this stage, the
uncertainty limits that can be tolerated may be also be

defined.

5.1.2. Assemble data layers to represent Q

Assemble the data layers with consideration of the

number of layers describing each factor and any

prior evidence as to the importance of each factor.

This was discussed in detail in Section 4. At this

stage, we do not know the relative importance of the

data layers. Balance is probably important. At this

phase of development, because of the relative avail-

ability of DEMs, it would be easy to obtain 15 or 50

terrain attributes (r), e.g., as described in Shary et al.

(2002), and rather difficult to represent a or c. An

attempt should be made to represent all the factors

however.

5.1.3. Spatial decomposition or lagging of data layers

This is suggested as a step because it is felt that

predictions might be scale dependent and it is impor-

tant to find the appropriate spatial associations. This

can be achieved either by a wavelet decomposition

(e.g., Epinat et al., 2001, applied to airborne NDVI

imagery), or geostatistically. The geostatistical ap-

proach involves modelling the correlation structure

in the imagery by decomposing the variogram into

independent spatial components, and then taking each

component in turn and kriging it, thereby separating it

from the others. Oliver et al. (2000) used this ap-

proach on SPOT imagery. Both of these methods will

allow the removal of short-range uncorrelated noise

components from subsequent sampling, modelling

and prediction stages. The spatial decomposition of

the environmental variables begs the question of

whether the target attribute should also be spatially

decomposed. In most cases, there would probably be

insufficient observations to do this effectively, but it

could be done where this is not the case.

An alternative approach to spatial decomposition is

that of spatial lagging, i.e., to fit a model such as,

Sðx; yÞ ¼ f ðsðxþ u; yþ vÞ; cðxþ u; yþ vÞ; . . .Þ
þ gðxþ u; yþ vÞ

where the soil attribute of interest is ‘‘regressed’’ on the

layers representing the scorpan attributes and on spa-

tially lagged ( + u, + v) copies of them, with u and v
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variable. This approach seems somewhat more cum-

bersome than the spatial decomposition approach.

5.1.4. Sampling of assembled data (Q) to obtain

sampling sites

In most cases, soil sampling will be required to set

up the model (except perhaps when the aim is map

updating). We have a lot of prior information on the

environmental variables which we can use to guide

the sampling. The aim is to construct predictive equa-

tions for the soil attributes of interest in terms of the

environmental variables. This is a kind of calibration

exercise and, therefore, it would seem wise to span the

range of values of each variable so that the prediction

model will not be required to extrapolate beyond its

bounds. One possibility is to use Latin hypercube

sampling (McKay et al., 1979), a constrained Monte

Carlo sampling scheme. It selects l different values

from each of m variables q1, . . . qr in the following

manner. The range of each environmental variable is

divided into m nonoverlapping intervals on the basis of
equal probability. One value from each interval is

selected at random with respect to the probability

density in the interval. The m values thus obtained

for q1 are paired in a random manner (equally likely

combinations) with the l values of q2. These l pairs

are combined in a random manner with the l values of

q3 to form l triplets, and so on, until l m-tuplets are

formed. We can search through the data and find the

locations that are taxonomically most similar to the

combination of values chosen, or find locations that

match the intervals in the various variables. In either

case, we will then have a set of l spatial coordinates

(locations) at which we can observe the soil attrib-

ute(s) of interest. Clearly, l should be related to the

number (m) of environmental attributes q (f 7), and

the number of parameters, u, and degrees of freedom,

w = l�u, in the model to be fitted. Intuitively, we

feel that nothing much will be achieved if l is less

than 100. Perhaps, l should be related to M the

number of pixels in the target map—a guess would

be 0.0001M < l < 0.001M. If there are a large number

of environmental variables, then the sampling could

be based on a smaller number of principal compo-

nents, or canonical variates if there is any prior

information on soil classes.

This kind of sampling should produce a reasonably

efficient way of sampling the soil and its environment
so that the range of conditions are encountered, ensur-

ing a good chance of fitting relationships if they exist.

Hengl et al. (2003b) suggest a somewhat related

sampling scheme for this purpose.

An alternative procedure is suggested by the work

of Lagacherie et al. (2001) that define a reference area

(Favrot, 1989) which, through the spatial data layers

of the environmental variables, extrapolates well to a

larger region. Sample the reference area purposively

or systematically (fit the model and extrapolate to the

rest of the area). This might give a better chance of

fitting local relationships with a given sampling effort,

and should be more efficient in field time. The

advantage hinges, however, on how well the extrap-

olation can be done.

5.1.5. GPS field sampling and laboratory analysis to

obtain soil class or property data

Step (iii) yields a set of l spatial coordinates at

which the observations of the soil attribute(s) are to be

made in the field. These can be located with a GPS

receiver, and samples taken for subsequent laboratory

analyses, in the usual manner. At a subset of these

locations, say 5%, a duplicate observation should be

made at a distance (say) half the resolution (q) to get

an estimate of the short-range field variability in the

soil attribute(s). This will help in subsequent spatial

modelling. If a specific purpose or numerical classi-

fication or allocation to a conventional classification

system is required, then the observed soil data can be

processed to obtain discrete or continuous class labels

for each observation site.

5.1.6. Fit quantitative relationships (observing

Ockham’s razor)

We can now assemble the soil data for the left side

of the scorpan equation, and the environmental data

for the right side. We can now fit the model f()

representing the l locations using any of the techni-

ques described in Section 3.3. Ockham’s razor (the

principle that states that ‘‘Entities should not be

multiplied unnecessarily’’) should be applied to find

the model (with the least number of parameters) that

fits best. The residuals (e) of the soil property or class

probability or membership at each of l sites should be

estimated also (and kriged using either scorpan-simple

or scorpan-compositional kriging as mentioned in

Section 3.4.2.2). A further improvement would be
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an iterative scheme whereby the f()is estimated, the e

estimated and then the f() reestimated, etc. as in the

following algorithm, written for a soil property, where

kb represents simple block kriging of a block of size

q = b.
Iterative scorpan-SSPFe algorithm (ISSA)
Fit S= f(Q) + e

Iteration 1

S= f1(Q)

c1 = kb1(S� f1(Q)) = kb1(e1)

n1 = e1� c1
Iteration 2

s� c1 = f2(Q)

c2 = kb2(S� f2(Q)) = kb2(e2)

n2 = e2� c2
Iteration i

S� ci � 1 = fi(Q)

ci = kbi(S� fi(Q)) = kbi(ei)

ni= ei� ci
Stop when Afi� fi� 1A< e and Aci� ci � 1A</
This algorithm is similar to the Generalised Esti-

mating Equations (GEE) approach which was con-

ceived by Liang and Zeger (1986) to extend

conventional generalised linear models to deal with

correlated data. The first applications were longitudi-

nal data correlated in time, e.g., Diggle et al. (1994),

but some spatial applications have been reported, e.g.,

Albert and McShane (1995) and Pebesma et al.

(2000). ISSA is slightly more general in that f() need

not be linear. If classes are to be mapped, a similar

though numerically more difficult algorithm could be

written for iterative scorpan-compositional kriging

(Section 3.4.2.2).

A single model may not be adequate especially if

there are strong pedogeomorphic or geological con-

trasts within the study area—each subregion may

show quite different relationships between soil and

environmental variables. In that case, it may be

necessary to a scorpan-SSPFe model for each of

the pedogeomorphic or geological subregion. Care

needs to be taken that the prediction surfaces pro-

duced are realistically continuous. This approach

demands a higher data burden than a single model

for a whole geographic region. Once again, the total

number of parameters in the final model needs to be

considered.
If we have a lot of local information for both sides

of the equation (like an existing soil map, or proxi-

mally sensed soil data), we can fit a local model,

S½x; y� ¼ flð½x; y�Þ þ elðx; yÞ;

where the l subscript on fl([x,y]) and el(x,y) refers to

models fitted to a local (moving) neighbourhood

centred on [x,y] rather than to the whole area to be

mapped. It will be rare that m will be large enough to

fit this model. This kind of model was used geo-

statistically, i.e., S[x,y] = el(x,y) for soil salinity map-

ping by Walter et al. (2001).

5.1.7. Predict digital map

We now have a model f() fitted to the l locations,

which we can now apply to the (M� l) locations

where we have no soil observations, but have envi-

ronmental observations. Additionally, kriging of the

residuals (e) at is also done at the (M� l) locations
and the results added together. Additionally, the

uncertainties of the predictions of f() and e at the M

locations should be evaluated. Raster maps can then

be made of the soil attribute(s) and their associated

uncertainties.

5.1.8. Field sampling and laboratory analysis for

corroboration and quality testing

It must not be assumed that the digital information

is perfect with minimal information on the quality of

the information. Indeed, we cannot expect this kind of

map to be more accurate than conventional ones.

There are two reasons for this: (i) local variation (at

whatever resolution) is a limiting factor, there is a lot

of soil variation within 10 m or 100 m or 1 km; and

(ii) there is uncertainty in environmental layers and

this can propagate errors (Florinsky, 1998; Lagacherie

and Holmes, 1997; Heuvelink and Burrough, 2002).

Soil sampling is required to provide an indepen-

dent estimate of the quality of the map produced (both

the map and its uncertainty estimate) should be done

(de Gruijter and Marsman, 1985). Of course, we could

put some of the original observations to one side.

These days, it seems fashionable to put one quarter to

one third aside for validation. This fraction does not

appear to be based on any empirical evidence. The

Marsman and de Gruijter (1986) approach is more

efficient in that the sampling is designed specifically
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for corroboration. Therefore, we would recommend it

as part of the process.

There has been little work on corroboration of

digital soil maps, especially of classes. This is an area

of research need.

5.1.9. If necessary simplify legend or decrease

resolution by returning to (i) or improve map by

returning to (v)

If we find that the map does not meet design

specifications, i.e., class purity is less than x%, or

the confidence intervals for a soil property are too

wide over parts of the map, then we can simplify

the legend or decrease spatial resolution (i) but

these should be design specifications, or more

sensibly, target further sampling (v) in areas where

predictability appears to be poor, and recalculate the

maps.

5.2. Uses

There are at least three potential uses of the scorpan-

SSPF approach. The first is the production of digital

soil maps as a replacement for the paper-based choro-

pleth soil map of the past. The second is the use of the

approach to extrapolate exiting soil maps into un-

mapped areas. The third is the construction of dynamic

soil maps. The first and second may be the most

important initially, and the third eventually.

5.2.1. Digital soil maps

The main use of the scorpan-SSPF approach is to

replace the polygon-based soil maps of the past with

digital maps of soil properties and classes and their

associated uncertainties for areas previously mapped,

or for new areas. These maps will be stored and

manipulated in digital form in a GIS creating the

possibility of vast arrays of data for analysis and

interpretation.

The first digital soil maps were simply representa-

tions of the observations without interpolation or rela-

tion to the environment (e.g., Webster et al., 1979).

Some authors have worked on better ways to present

digital spatial soil information, chronologically (de

Gruijter and Bie, 1975; de Gruijter et al., 1997; Grun-

wald et al., 2001). This is an area requiring consider-

able research. One goal must be fully operational

multiresolution digital soil maps.
While we cannot necessarily expect the maps to

more accurate than conventional ones, we can expect

to have a quantitative estimate of the uncertainty

(Section 5.1); sampling effort should be expended to

achieve this. Laba et al. (2002) compared convention-

al (Congalton and Green, 1999) and fuzzy (Gopal and

Woodcock, 1995) methods to assess the accuracy and

uncertainty of land cover maps produced at high

taxonomic resolution. These methods could be ap-

plied to digital soil maps.

Survey commissioners, decision makers and users

in general would perhaps be more comfortable with a

concept of certainty rather uncertainty. This answers

the question, ‘‘how well do we know the value at

some location?’’, rather than concentrating on ‘‘how

badly we know it’’. A potentially adequate stand-

ardised (0! 1 or 0%! 100%) measure of certainty is

f= 1�min(2s/V, 1), where s the standard deviation of

the estimate. e.g., if we have an estimate V of clay

content of 50% and an s of 5% then f = 0.8 or

f%=80%. More sophisticated measures may be re-

quired, such as a certainty characteristic—the proba-

bility that a statement C is true within a distance d or

an increasing neighbourhood A. Clearly, more work is

needed on standards for digital soil maps.

5.2.2. Interpolation or extrapolation of existing soil

maps

If s for a previouslymapped region is put on the right

of scorpan equation, the legend is retained largely, and

new samples are collected, this might be considered by

some to be map updating. There is another possibility;

this is where the previous s is put on the left rather than

the right side of the scorpan equation (an example is

given in Bui et al., 1999). The advantage of this is that

no new sampling is required for fitting—although

corroboration sampling should be done (see Section

5.1 (viii) above). This would allow quantitative elabo-

ration of the existing (but unknown) models; for

classes, this is what Girard (1983) referred to as (the

usually unknown) ‘chorological rules’, and their sub-

sequent extrapolation to new areas. Possible problems

include repeating old models which may be wrong, or

extrapolation outside the range of associated environ-

mental data sets—Lagacherie and Holmes (1997) and

Lagacherie and Voltz (2000) discuss this for land-

scapes, while McBratney et al. (2002) were concerned

about this for pedotransfer functions. It is also impor-



Fig. 2. A Venn diagram showing the relationship between

pedotransfer functions (PTFs), soil spatial prediction functions

(SSPFs) and their intersection, spatial PTFs.
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tant to establish for which purpose existing data have

been collected. Some soil surveyors use auger obser-

vations to confirm their mental model, while other use

them to find inclusions or boundaries. Therefore, this

approach should be used with a deal of caution.

5.2.3. Environmental change—partially dynamic

‘scenario’ soil maps

Onemajor criticism of conventional soil maps is that

they are essentially static statements. Digital soil maps

created with the scorpan-SSPF methodology offer new

and necessary possibilities. It is becoming increasingly

important for environmental reasons to know not just

S[x,y] but S[x,y,t]. If we know any of the partial differ-

entials, ys/yt, yc/yt, yo/yt, etc., the first two perhaps

being the more important—we can project the existing

soil map forward by some time u by calculating most

simply say c + u(yc/yt) for all points and running

the new c layer(s) through the prediction function.

‘‘Change-detection analysis’’ (Mücher et al., 2000) is

well developed for land use and vegetation change

(components of yo/yt) using remotely sensed imagery

and/or aerial photographs average and localised values

of o can be estimated from rasterised images taken at

two or many times (Munyati, 2000). Other derivatives

may be obtained from models (e.g., temperature and

rainfall changes) or from a few monitoring stations

(e.g., soil changes) within the area of interest (Men-

donça Santos et al., 1997).

This potential approach has limitations compared

with a fully fledged dynamic simulation model, such

as lack of feedback and possible extrapolation prob-

lems, where for example c + u(yc/yt) takes us (well)

outside the range of the original training data. Never-

theless we still have a relatively quick and easy way to

produce first-cut ‘scenario’ soil maps of both proper-

ties and classes.

5.3. General discussion

We now discuss some general points relating to the

scorpan-SSPF approach to making digital soil maps.

5.3.1. Pedotransfer functions

Some people might wish to call the soil spatial

prediction functions pedotransfer functions (PTFs)

but we would caution against that. We believe they

should be called pedotransfer functions only when
soil attributes (i.e., classes or properties) appear on

both sides of the equation s = f(s) (and not when

s = f(o,r,p,a,n)), and when some principles outlined

by McBratney et al. (2002), principally the effort

principle, do not predict something that is easier to

measure than the predictor, are observed. For ex-

ample, McBratney et al. (2002) do not consider

functions that predict soil classes from soil proper-

ties to be useful or legitimate PTFs (Table 2),

whereas they might be perfectly useful SSPFs.

Admittedly, it is debatable whether for example

s = f(r) should be considered a PTF, we simply think

that this extends the definition too far. There is a

possible intersection, or area of overlap, between

PTFs and SSPFs, i.e., when s1= f(s2,. . .), they obey

the PTF principles, and they are located spatially

i.e., they are a function of spatial coordinates. These

are spatial pedotransfer functions. Fig. 2 is an

attempt to illustrate the differences and possible

overlap between PTFs and SSPFs. Pachepsky et

al. (2001), Rawls and Pachepsky (2002) and Roma-

no and Palladino (2002) almost illustrate examples

of spatial or contextual pedotransfer functions, but

they are really examples of s = f(s,r), so they are

more SSPFs than PTFs.

5.3.2. Spatial aspects of the scorpan-SSPFe and other

models

The corpt or environmental correlation approach

has no formal spatial component except perhaps for

some contextual variables. On the other hand, the
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geostatistical approach is almost purely spatial and

has a rather simple model of soil–environment rela-

tionships—the linear model of co-regionalisation. For

realistic modelling geostatistics needs at least (i) a

local linear model of co-regionalisation—but this is

difficult to fit automatically, and/or (ii) a nonlinear (or

nonaffine) model of coregionalisation.

The scorpan-SSPFe approach, outlined in this pa-

per, has sophisticated soil–environment relationships

and incorporates spatial aspects in three ways:

1. n is explicitly used as a factor,

2. the environmental variables are spatially decom-

posed or spatially lagged,

3. the residuals are treated spatially.

This model could also be applied in a local moving

neighborhood.

5.3.3. Is this the right approach?

As was said at the beginning of Section 5.1, this

is a proposal, not a fait accompli, albeit based on a

deal of work and experience worldwide. Whether or

not this turns out to be the right approach hinges on

a number of factors, not all of them scientific, but we

shall deal with those first. Scientifically one could

ask a number of questions. Are there other soil-

forming factors? Are we missing key variables? For

example, have we successfully incorporated hydro-

logical effects? Is the underlying idea of a soil

somehow in equilibrium with its environment rea-

sonable enough to be predictive? Or, is the soil too

chaotic for prediction by other factors? Will the

proposed methodology give similar answers as tra-

ditional approaches, and do we want it to? Further

experiment and experience will indubitably answer

these questions.

There are other socio-economico-political factors

that will have a bearing also. The socio-political

factors demand recognition of, and solutions to,

environmental problems. We believe the approach

has the right kind of economics—it is potentially

cheaper than traditional approaches and gives

the desired kinds of information. Most of the hard-

ware and software tools are in place to put this

approach into practice. Clearly, integrated systems

have to be devised. Research into aspects is always

needed, principally efficient sampling designs and
useful certainty estimation. The biggest stumbling

block is the teams of personnel with the skills

required to complete the task. Education of skilled

and knowledgeable personnel for those teams is a key

priority.

5.3.4. Dangers—let the user beware!

There are real dangers with this, or any new

approach, if it is misused or abused. Here we outline

briefly some obvious pitfalls.

1. Data quantity and quality. The first danger is

not using enough real soil observations to fit

the models, or with using poor quality (missing or

noisy) predictor variables. This can to a degree be

handled by uncertainty analysis—a large topic

(Heuvelink, 1998), which has not been discussed

formally in this paper. There is a lower limit below

which any fitted models will be meaningless.

2. Overfitting the data. It is easy to overfit models;

this could be because of lack of observations but

more because of lack of parsimony, especially a

problem for tree-based methods. Overfitted models

predict poorly. It is imperative to apply Ockham’s

razor—this will help with evaluating poorly fitting

or overfitted models. The use of cross-validation,

pruning and boosting methods (Hastie et al., 2001)

might also help.

3. Circularity. A third hazard comes from the possible

circularity of the model, e.g., a DEM producing

climate surfaces producing soil variables as an

input to soil class prediction. Once again un-

certainty analysis will help.

4. Databases and data mining. During the past

decade, soil scientists have created regional, na-

tional, continental and worldwide databases. Data

mining is a phrase for a class of database ap-

plications that look for hidden patterns in such

groups of data (Hastie et al., 2001). Unfortunately,

the term is sometimes misused to describe software

that presents data in new ways. Proper data mining

software attempts to discover previously unknown

relationships among the data. Data mining is a

broad concept from supervised learning (predic-

tion) to unsupervised learning and includes all the

methods described in Section 3.3 above-neural

networks, classification trees with boosting. There

are a large number of commercial software
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products available to do this. They incorporate one

or often several of the methods described in

Section 3.3. This will make evaluation difficult as

different soil science groups use different software

products for fitting f(), therefore, comparative

studies will be important to evaluate the best

approaches. In addition large national or interna-

tional databases of legacy soil data will be

available (e.g., Bui et al., 2002); they also have

potential problems because of their unknown site

selection probabilities—which are not usually

equal—some of the data from the island of Britain

where a 5 km grid survey has been completed, are

an exception!

5.3.5. A new paradigm?

Hudson (1992) described soil survey as a para-

digm-based science. Paradigm is a much overused and

hackneyed word these days but it has a precise

philosophical meaning. Much of the following two

paragraphs is paraphrased from Rosenberg (2000). It

is a term employed by Kuhn (1996) to characterise a

scientific tradition, including its theory, apparatus,

methodology and scientific philosophy. The soil sci-

entist’s task is to apply the paradigm to the solution of

problems. Failure to solve problems is the fault of the

scientist not the paradigm. Persistent failure makes a

problem an anomaly and threatens a revolution which

may end the paradigm’s hegemony.

What’s the difference between the scorpan-SSPFe

approach and the conventional Jenny landscape

model? Both are models—they are simplified descrip-

tions of regularities governing a natural process,

usually mathematical and sometimes derived from

a more general or simplified theory. Ontologically,

they are similar—they both require soil objects and

attributes which are a function of their environment.

The conventional paradigm is a qualitative theory.

The approach outlined here is a quantitative, partially

deterministic, partially probabilistic, empirical theory.

So methodologically, they are quite different. The

apparatus is also different, here we require digital

information, computers, GIS, etc. The Jenny land-

scape model may be fall under the deductive-nomo-

logical model of scientific explanation but because of

its somewhat probabilistic nature the scorpan-SSPFe

approach may fall under the inductive-statistical

model of explanation (Rosenberg, 2000). Therefore,
the scorpan-SSPFe approach to soil mapping proba-

bly represents an emerging paradigm eventually

leading to a complete paradigm shift.

This begs the question, does f() have to be empir-

ical? The Vienna school of logical empiricists would

be generally happy with scorpan-SSPFe approach,

although perhaps they would have difficulties with

its partially probabilistic nature. The lack of a mech-

anistic theory for predicting soil tugs at the soil

scientist’s cloak of explanation. Perhaps this is an

unnecessary concern, philosophical empiricists be-

lieve there is nothing to causation beyond a regular

sequence. Any testing of the mechanistic theory will

require empirical observation of the real world. The

first attempts at a mechanistic approach have begun

(Minasny and McBratney, 2001) but it will be a long

time before the mechanistic theoretical approach will

be competitive in the predictive sense.
6. Conclusions

We have reviewed various approaches to predictive

modelling and data acquisition and proposed a meth-

odology for producing digital soil maps.

6.1. Summary of the method

The scorpan-SSPFe method essentially involves

the following steps.

1. Define soil attribute(s) of interest and decide

resolution q and block size b.
2. Assemble data layers to represent Q.

3. Spatial decomposition or lagging of data layers.

4. Sampling of assembled data (Q) to obtain

sampling sites.

5. GPS field sampling and laboratory analysis to

obtain soil class or property data.

6. Fit quantitative relationships (observing Ockham’s

razor) including spatially autocorrelated residual

errors.

7. Predict digital map.

8. Field sampling and laboratory analysis for corrob-

oration and quality testing.

9. If necessary simplify legend, or decrease resolution

by returning to (i) or, improve map by returning to

(v).
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All of the hardware and software tools, technolo-

gies and knowledge, are in place to make this ap-

proach operationable. This is clearly an exciting time

for soil resource assessment.

6.2. Future work—open questions

Clearly, we need to try out the methodology

outlined above and by experience we shall discover

the useful forms of f() and the serviceable Q layers

are. These are the key open questions. In summary,

topics to be further researched include:

1. Environmental covariates for digital soil mapping.

2. Spatial decomposition and/or lagging of soil and

environmental data layers.

3. Sampling methods for creating digital soil maps.

4. Quantitative modelling for predicting soil classes

and attributes (including generalised linear and

additive models, classification and regression trees,

neural networks, fuzzy systems, expert knowledge

and geostatistics).

5. Quality assessment of digital soil maps.

6. (Re)presentation of digital soil maps.

7. Economics of digital soil mapping.

Nevertheless, we believe the methodology can be

used now for real-world applications.
Even if there is only one possible unified

theory, it is just a set of rules and equations.

What is it that breathes fire into the equations

and makes a universe for them to describe?

The usual approach of science of constructing a

mathematical model cannot answer the ques-

tions of why there should be a universe for the

model to describe. Why does the universe go

to all the bother of existing? (Stephen W.

Hawking, 1998. A Brief History of Time: From

the Big Bang to Black Holes, Bantam, NY,

p. 174.)
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Fidêncio, P.H., Ruisanchez, I., Poppi, R.J., 2001. Application of

artificial neural networks to the classification of soils from
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